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Abstract

The contents of this report covers: (i) development of optimal geometry
for crowned spur gears; (ii) methods for their generation; and (iii) tooth
contact analysis (TCA) computer programs for the analysis of meshing and

bearing contact of the crowned spur gears.

The developed method for synthesis is used for the determination of the
optimal geometry for crowned pinion surface and is directed to reduce the
sensitivity of the gears to misalignment, localize the bearing contact, and

guarantee the favorable shape and low level of the transmission errors.

A new method for the generation of the crowned pinion surface has been
proposed. This method is based on application of the tool with a surface of
revolution that slightly deviates from a regular cone surface. The tool can
be used as a grinding wheel or as a shaver. The crowned pinion surface can be
also generated by a generating plane whose motion is provided by an automatic

grinding machine controlled by a computer.

The TCA program simulates the meshing and bearing contact of the

misaligned gears. The transmission errors are also determined.
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Summary

Spur gears are widely used to transmit mechanical power between
parallel axes of drive shafts. Namely, such gears are used in
planetary trains of helicopters. It is well known that spur involute
gears are very sensitive to gear misalignments. Misalignment will
cause: the shift of the bearing contact toward the edge of the gear
tootn surfaces and transmission errors that increase gear noise. The
previous metnods for crowning of pinion tooth surface have been
directed at providing of a favorable bearing contact. The
transmission errors of the misaligned gears have been ignored. The
new approach developed by the authors of this report is directed at
the synthesis of spur involute gears with a crowned pinion surface
that provides: (i) a parabolic type of low transmission errors for
the misaligned gears and (ii) a 1localized bearing contact. New
methods for the generation of crowned pinion surface proposed by the

authors can be readily applied by the gear industry.
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1. Introduction

Spur involute years are very sensitive to gear misalignments that
cause: (i) the shift of the bearinyg contact to the edge of the gear
tooth surfaces and (ii) transmission errors that increase gear
noise, Many efforts have been done to improve the bearing contact of
misaligned spur gears by crowning of pinion tooth surface. Wildhaber
(ly62) has proposed various methods of crowning that can be achieved
in the process of gear generation. Maag engineers (see References)
have used crowning as (i) longitudinal corrections (Fig. 1l.la), (ii)
modified involute tooth profile uniform across facewidth (Fig. 1.1b),
(iii) combination of longitudinal correction and uniform modified
profile (Fig. l.lc) and (iv) topological modification (Fig. l1.1d) that
can provide any deviation of the crowned tooth surface from a regyular
involute surface.

The main purpose of the previously proposed methods for crowning
was to improve the bearing contact of the misaligned gears. This
resulted in only part of the solution. The transmission errors of the
misaligned spur gears (a main source of the noise), were ignored. The
influence of gear misalignment on the transmission errors has not been
investigated. Maag's method of topological modification does not
quantify the relationship between the surface deviation and the
transmission error. Also the optimal geometry for the crowned pinion
surface has not been proposed.

The contents of this report cover the solutions to the following
probieis: (i) optimal gyeometry of a crowned pinion tooth surface;
(ii) new method oif crowning based on application of a tool with a

surface of revolution (the tool surface is slightly deviated from a



cone surface) (iii) the development of Tooth Contact Analysis (TCA)
programs for the determination of transmission errors for misaligned
gears and their bearing contact.

The development of the optimal geometry of a crowned ninion gear
tooth surface is based on the following considerations:

(i) Misaligned spur gears with a crowned ninion tooth surface
can provide transmission errors A¢2(¢1) of two types that are shown in
Fig. 1.2a and 1.2b, respectively. The transmission errors are

determined with the equation as

_ 1
A¢2(¢1) = ¢2(¢1) - ﬁ; by (1.1)

Here: Ny and N, are the numbers of gear teeth; ¢, and ¢, are the
angles of gear rotation; ¢2(¢1) is the function that relates the

angles of rotation of gear and pinion if the pinion is crowned and the
N

gears are misaligned; 659 = ﬁ% ¢ is the theoretical relation between
the angles of rotation of the gears in the ideal case where the gears
are not crowned, not misaligned and the transmission errors do not
exist. Type 1 of transmission errors are not acceptable because the
change of tooth meshing 1is accompanied with an interruption or
interference of tooth surfaces. Type 2 of transmission errors is more
preferable if the level of the transmission errors does not exceed a
prescribed limit.

(ii) On the first glance crowning should be directed at
providing an exact involute shape in the middle cross-section

(Fig. 1.3). In reality this type of crowning is not acceptable

because the misaligned gears will transform rotation with transmission



errors of type 1 (Fig. 1.2a). This is the reason why the authors have
decided to synthesize a specific crowned pinion tooth surface. Such a
pinion can provide transformation of rotation with a parabolic type of
transmission error function when it is in meshing with a gear with a
regyular involute tooth surface. This type of function of transmission
errors is synthesized for ideal (gears that do not have any
misalignment. Then, the tendency to provide parabolic transmission
errors can be extended for the misaligned gears and the discontinuance
of mesning can be avoided. It 1is necessary to emphasize that the
proposed method of synthesis provides a shape in the middle cross-
section of the pinion tooth that deviates in a certain way from the
involute curve that is shown in Fig. 1.3. The longitudinal deviation
from a straight line is not related with the transmission errors but
with the desired dimensions of the instantaneous contact ellipse for
the year tooth surfaces. The proposed pinion tooth surface can be
yenerated by a plane as the chosen generating surface. The motions of
the plane with the respect to pinion must be controlled by a computer.

(iii) Another method of pinion crowning is based on application
of a surface of revolution that slightly deviates from a regular tool
conical surface (Fig. 1.4). Such a tool can be used as a grinding
wheel or as a shaver. The motions of the tool and the gear being
gyenerated are related similarly to the motions of a rack-cutter and
the year (see Chapter 4). A tool with a reyular conical surface can
yenerate a crowned pinion tooth surface whose middle cross-section
represents an involute curve (Fig. 1.3). However, this type of a
crowned pinion tooth surface is not desirable because the misaligned

Jears provide transmission errors of type 1 (Fig. 1l.2a). This is the




reason why a tool with the surface of revolution is to be used instead
of a conical surface.

(iv) The evaluation of the bearing contact and transmission
errors for the misaligned gears as well as the investigation of the
influence of errors of gear assembly requires application of TCA
programs. Such programs have been developed by the authors. The
proyrams are based on the following algorithms:

(a) The contacting gear tooth surfaces are represented in a
fixed coordinate system, Sg, that is rigidly connected to the gear
housing (Fiy. 1.5).

(b) Thne continuous tangency of gear tooth surfaces is provided
if the position-vectors and surface unit normals for the contacting
surfaces coincide at the contact point at any instant. Then, we are
able to determine the path of contact on the gear tooth surfaces and
the relations between the angles of rotation of the output and input
gears. Knowing function ¢2(¢1), we can determine the deviations of
this function from the prescribed 1linear function 1i.e. the
transmission errors.

(c) ©Due to the elasticity of the gear tooth surfaces the surface
contact 1is spread over an elliptical area. The dimensions and
orientation of the instantaneous contact ellipse depend on the
principal curvatures and principal directions of the contacting tooth
surfaces. The beariny contact is determined by the developed TCA
proyram as the set of the contact ellipses that move over the

contacting surfaces in the process of motion.



2. Optimal Pinion Geometry

. 2.1 Basic Consideration

[ It is assumed that only the pinion will be provided with a
 crowned tooth surface while the gear is provided with a regular
, involute surface. The crowned pinion tooth surface deviates from a
" reyular involute surface. The topology of the crowned pinion tooth
}surtace must satisfy the following requirements: (i) the pinion tooth

surface is a continuous one; (ii) the pinion and gear tooth surfaces

are 1in contact at a point at any instant; (iii) the principal
directions and curvatures of the contacting surfaces must be related
in such a way that the instantaneous contact ellipse will be of
- appropriate dimensions; (iv) the function of transmission errors of
the misaliygned gears should be of a parabolic type and its level must
not extend the prescribed limits. The satisfication to the described

conditions is considered in the following sections of this part.

1 2.2 Parabolic Type of Function of Kinematic Errors

: Initially we will consider that the gears are not misaligned, the

'pinion tooth surface 1is crowned and the gear tooth surface is a

|

'regular involute surface. The tooth surfaces are in point contact at

|

'every 1nstant and the points of contact lie in the middle cross-
:section. Thus, initially we consider tne meshing of gear tooth
;surfaces as a planar gearing. However, when simulating the meshing of
gyears by TCA proyram, we will consider the mesh of them as spatial
gears.

Figure 2.Z.1 snows the shapes of the gears which are in contact

at a point that lies on the center distance. The shape of the gear




tooth profile is a regular involute curve, and the shape of the pinion
tooth profile is to be determined. It is given that the shapes must
provide transformation of rotation represented by the function (Fig.

2.2.2a)

=z

$5(0q) =ﬁ% o1 * Ao, (8y) (2.2.1)
where A¢2(¢l) is a function of a parabolic type that represents the
function of transmission errors; N; and No are the numbers of gear
teeth. We have to emphasize that the proposed method for synthesis
provides low transmission errors for aligned gears and the function of
transmission errors 1is a parabolic one. Then, the misaligned gears
will keep the tendency to transform rotation with the same type of
transmission errors and the discontinuance of contact by meshing will
be avoided. This means that we have to avoid the appearance of
transmission errors that are shown in Fig. l.2a. Function
¢2(¢1) contains a linear function represented by ;i o that relates
the angles of rotation of the "ideal" input and output gears. Figure
2.2.2a shows the function ¢,(8) The function of transmission

errors is represented to a larger scale in Fig. 2.2.2b as a periodic

function of a parabolic type. The derivative

865 (61)) = g5= (A85(s1)) (2.2.2)

= 1
is shown in Fig. 2.2.2c. For a "pure" parabolic function this
derivative 1is a 1linear function. It is evident that the second

derivative represented by



| 2 2

\ - d
) (29,(97)) 5—5 (,0(07))
| 1 *1
|
‘is negative. The transformation of rotation by the gears will be

r
‘performed with a non-constant gear ratio

Ny
»‘ m21 =...=.I.\g + A¢§(¢l) (2.2.3)

{The instantaneous center of rotation I is moved along the gear center

Ldistance in the process of gear rotation. Figure 2.2.1 shows the

instantaneous location of I.
|

More details about the geometry of the pinion that corresponds to

t
the discussed function ¢2(¢l) will be given in Chapter 3.

|
|
|
|

2.3 Relation Between the Principal Curvatures and Directions

The relation between the principal curvatures and directions of

the contacting surfaces and the derivative of the gear ratio msy is
}

Fepresented as follows (Litvin, 1987)

? byp  Pyy b3 5 3.1

| b b b =0 (2.3.1)
21 22 23

| byy b3y bay

Eor the case of spur gears with the crowned pinion tooth surface the

blements of the determinant of Eg. (2.3.1) are represented by the

Following equations




b,, =Db b =Db b = b (2.3.2)

21 12 31 13 32 23
_ (1) (2)
Pir P | _ | Tt 0
_ (1) (2)
by, Py, 0 ki1t o*rT (2.3.3)
- . (12)
o131 _ e -u (2.3.4)
(12)
DT Srr*¥
= o (1) (2)y L (2) (1),
b33 = Q-L(g thr ) (% thr Vi (2.3.5)

+ (m(l))zmél(gx&z). (r(l)

~f -C)

Figure 2.3.1 shows the tangent plane to the gear tooth surfaces at the

point of contact I (see Fig. 2.2.1). The principal directions are

represented by the unit vectors er and 11 that are the same for the
both contactinyg surfaces. Vector e, is shown in Fig. 2.3.1 and is

represented in coordinate system Sg as follows

siny
= c (2.3.6)

wnere Ve is the pressure angle at point I. Vector is directed

11

parallel to the neyative zg-axis and is represented by



0
err = | 9 (2.3.7)

The surface unit normal vector is represented by (Fig. 2.2.1)

cosy,
Ne = €1X€1p = siny, (2.3.8)
0

The angular velocities of rotation are represented by (Fig. 2.2.1)

o
W= o o2 = W) o (2.3.9)

2

Vectors zéi) and yéﬁ) represent the velocities of the contact point in

transfer motion, while gears rotate. Thus (Fig. 2.2.1)

.
(L) _ (1) , (2) _ (2)
viy' = e 0,1 | 0 viZl = w'?lo,1 | o (2.3.10)
. (1)
Vector g and Ef are
0 0l
c=u0. |1 A R i (2.3.11)
~ l 2 ~ 1 . P
0 0



Nl N2 N1 N2
1 = 0 = _= — = = = = 3 3
where 0102 C 75 + 5 011 7D 021 55 p is diametral

pitch and C° is ideal or nominal central distance.

o

Kéz) and Ki%) are the first and the second principal curvatures of the

gear tooth surface represented by

(2) _ 1 (2) _
1 ' T O,Tsiny g = O (2.3.12)
2 o)
N2
where 021 = ) is the radius of the gear pitch circle. The positive

sign of the curvature indicates that the curvature center lies on the
positive direction of the surface unit normal. The unit vector &2 in
Ege. (2.3.5) coincides with the unit vector of %(2). Thus &2 = &f where
§f is the unit vector of the zg-axis (Fig. 2.2.1).

BEquations (2.3.1) - (2.3.12) yield the following relation between

the derivative (m2l(¢l)) and the principal curvatures of the

m‘:._d.
21 d¢1

crowned pinion tooth surface

ms5;, = - A

21 B

where

= (1) <p

N I Rt
I N151nwc
2p
(1) | _ o
. N2 2p Nz('KI | Nlblnwc) (2.3.13)
Nltanwc lelnwc N1+N2

The yoal is to provide a parabolic type of the transmission error

function at least in the neighborhood of the main contact point 1I.

10




This reguirement can be satisfied with the negative value of msy e

Using Eq. (2.3.13), we can control the value of m‘l (it is negative)

2
by varying the values of Kgl). It is evident that M5y is negative if
l K(l) | > <—22- . Here: —«gg—— is the curvature at point I if the
I N151nwc lelnwc

pinion would be provided with a regular involute curve; Kgl) is the
curvature of the modified shape of the pinion tooth in its middle
cross—-section. We have emphasized that the pinion tooth surface must

pe deviated in the longitudinal direction (Fig. 1.3) to provide the

point contact of the mating tooth surfaces and localize the bearing

contact.

11




3. Design of the Crowned Pinion Tooth Surface for the
Prescribed Transmission Error Function

3.1 Basic Concept

Consider that the function ¢2(¢1) that relates the angles of

rotation of the gears is represented by (Fig. 3.3.1).

N

1 2
¢2(¢l) = ¢l N_2 + bl—a1¢1 (3.1.1)
N
Here: ¢, = is the linear part of function
2

¢2(¢1) and A¢2(¢1) = by~ a1¢% is prescribed parabolic function of
transmission errors.

The gcar 1is provided with a regular involute surface. If the
gears are aligned, the crowned pinion tooth surface and the gear tooth
surface are in mesh in the middle cross-scction. The contact of the
gear tooth surface can be considered as the contact of two planar
shapes. Our goal is to determine the shape of the pinion tooth
surface in the middle cross-section.

We consider that the transmission errors in the region of

< ¢,< §- are on average equal to zero. Thus

—t

/ % (bl-a1¢%)d¢1= 0 (3.1.2)

(3.1.3)

12



Henceforth we will use the following coordinate systems
(Fig. 3.1.2): 51(X1,Y1) and 52(X2,Y2) that are rigidly connected to
the pinion and gear respectively; and Sg(xXxg,yg) that is the fixed
coordinate system employed in the housing.

The determination of the pinion tooth shape is based on the
following considerations:

(i) The gear tooth shape s is a regular involute curve
represented in coordinate system 5, by the vector-function 52(¢G)7
the shape unit normal is represented by 22(¢G)'

(ii) Using the coordinate transformation in transition from S,
to Sg, we can represent the family of curves Ig in S¢ as follows

(2)y = g

(e () =

Mf2] [r2] [nf Lf2] [n2] (3.1.4)

(iii) The equation of meshing is represented by

n{?) v{21) =

~f ~f (3.1.5)

where yéZI) is the sliding velocity at the contact point.

Equations (3.1.4) and (3.1.5) yield the following relation

£(pgré,) = O (3.1.6)

that is called the equation of meshing.

(iv) The following equation

[ry) = D 10efP ) = 11,10, (3.1.7)

13




and the equation of meshing (3.1.6) determine the shape of the pinion
tooth in the middle cross-section. The surface of the pinion can be

determined based on the shape in its middle cross-section.

3.2 ©Derivation of Pinion Tooth Surface

Gear Tootn Involute Shape Equations

The gyear involute shape and its unit normal are represented in So

as follows:

X, = r,lsing;=¢,cosp cos(¢;-v,)]

Yy, = I, [cos¢G+¢Gcos¢Csin(¢G—¢C)] (3.2.1)
z, = 0
_-cos(¢G—wC)-
n, = (3.2.2)
sin(¢G—¢c)
- O —

Here: r, is tne radius of the gear pitch circle, Ve is the pressure
angyle and o is the 1involute curve parameter; n, is the normal of
tootn shape.

Matrix {Mg,)] 1is represented by

—Cos ¢, sin¢2 0 0

[Hg,) = |-sing, -cosg, O c® (3.2.3)
0 0 1 0
0 0 0 1

14



Usiny Egs.

(3.1.4),

(3.2.1),

(3.2.2)

and (3.2.3),

we represent the

family of shapes Z, and the shape unit normal in Sg¢ as follows

n{?)

! lréz)] =r

—cos(¢G—¢2)

cos(¢G—¢C-¢2)1

-sin(¢G-¢c-¢2)

—sin(¢G—¢2) + ¢Gcoswccos(¢G-wc—¢2)

\ - 0 -
i
|
- Bquation of Meshing
} The sliding velocity
7
}equation
|

(21) _ (2) T (2)
| 4 o X (0y074Le™")
- Here (Fig. 3.1.2)

0
(1) _ (1) G
W = w 020l

2(21)

- ¢Gcos¢cs1n(¢G-¢c—¢2)
0
is represented by the
_ (L), (2)
w XLg
0
_c© o2 = ,2)
0

15

(3.2.4)

(3.2.5)

following

(3.2.6)



o Nl+N2 _ N

The expression for w., is obtained by differentiating Eq. (3.1.1).

2
Equation (3.2.6) yields

- (2) 7 " O
Yf C
] . (2)_ (1) (2)
i MG I BT TR E S I I (3.2.7)
- 0 -~ '0 -

Eguations (3.1.5), (3.2.7), (3.2.4) and (3.2.5) yield the following

equation of meshing

N N
£(dyr0,)= coswc(N—l- + 1= 2a6)) - (N—l + 1) cos(bg=v,=b,) = 0
2 2
(3.2.8)
N .
where ¢, = Nl o1 t (bl—al¢i).
2

Fixiny ¢ s we can obtain parameter oG Equation (3.2.3) provides
two solutions for oy * Therefore it 1is necessary to choose the

solution correspondinyg to the working part of shape Lo

Pinion Tooth Shape Egquations

Matrix [Mjg]l 1is represented pby (Fig. 3.1.2)

cos ¢, —sin¢l 0 0

[le] = sing, cos ¢, 0 0 (3.2.9)
0 0 1 0
0 0 0 1
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Equations (3.2.9), (3.1.7), (3.2.4) and (3.2.8) yield the following

equations for the pinion shape

= _rOas . _
Xy = Crsing; + rzsln[d)1 ¢c+g(¢1)] (3.2.10)
N 2
+ r2[ﬁ; 1 + bl - ayéy + wc - g(¢1)] coswccos[(¢1+g(¢l)]

Yy, = Cocos¢,1 - rzcos[¢1—wc+g(¢l)]

2 .
1¢1 + wc— g(¢1)] cos¢051n[¢1+g(¢l)]

Here:

2al¢1
g(¢1) = arc COS{[]." W]Coswc}

Equations (3.2.10) represent the pinion shape in parametric form, with

the parameter 61 For the case where the prescribed transmission

errors are zero, al =0, b

the pinion tooth shape as a regular involute shape.

1= 0, g(¢1) = Y, and Eg. (3.2.10) represent

Pinion Tooth Surface Equations

The crowned pinion tooth surface must be deviated from a

cylindrical surface in the longitidunal direction (Fig. 1.3). The

17




simplest way to obtain such deviation is based on representation of
the pinion tooth surface as a surface of revolution. Such a surface
can be gyenerated by tne rotation of the pinion tooth shape about a
fixed axis. The determination of the pinion surface of revolution can
be performed oy using the followiny procedure:

(i) Assume that the pinion tooth shape has been transmitted from
tne coordinate system S; to the auxiliary coordinate system S, (Fig.

3.2.1la). Thus the tootn shape is now rigidly connected to coordinate

system S5 and is represented in 5, by the following matrix equation:

Lo
1]

[, )0 (o)) (3.2.11)

c X

M (3.2.12)

cC O O ~
c c = ©
cC = Cc G
- O

(i1) On tne second staye we use a fixed coordinate S, and rotate
the coordinate system S, witn the tooth shape about the yp-axis. The
tooth shape will generate a surface of revolution represented in S; as
follows (Fig. 3.2.1D)
= [M

(r Jir ] (3.2.13)

b] ba a

where

18 .



(iii) Now ,

2}
[
o}
@
OC O
Q
o]
0
@

(3.2.14)

o
HOOO

we can represent the generated pinion tooth surface

in coordinate system S; using the following matrix equation (Fig.

3.21c):

[rq] = [M,]

where

[Mlb‘ =

S O O

The final

[r,] (3.2.15)

(3.2.16)

Cc O = O
< O O

expression of the pinion tooth surface can be

represented now as follows

lry(8,0,)1 =

Equations (3.2.11)

£1(8,4)
£,(0,0,) | = [y 104, ()1 1M 1 11r, (op)]

1
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fl(e,¢p) = x1(¢P)cose - R{(1l-coss)

f2(6,¢p) = Yl(¢p)

f3(9,¢P) = x7(¢,)sine + Rsinsg (3.2.18)
Here xl(¢9), 11(¢P) are functions (Eg. 3.2.10) that represent the
pinion shape in the middle cross-section. Also for convenience, we

use ¢p as curve parameter instead of ¢+

3.3 Simulation of Meshing and Bearing Contact

The authors have developed the TCA (Tooth Contact Analysis)
program to simulate the meshing and bearing contact of misaligned
gears (see the Appendix). The results of the TCA program confirm that
the proposed method of crowning reduces the sensitivity of gears to

tine misalignment (as shown in numerical example).

Example
Given: numbers of teeth: Ny = 20, N, = 40; diametral pitch
P =1y T% ; pressure anygle b = 200, The pinion tooth surface has been

desiyned as a crowned surface and the function of transmission errors
for the gyears without misalignments has been represented as a
parapolic function with the "Level of Kinematical Errors (LKE)" = 2
arc second. Radius of rotation Ry = 350 in (see Fig. 3.2.1). The
developed TCA program has been applied for the evaluation of trans-

mission errors for the following misalignments:

(1) The change of the center distance is A% = 1%. The gear axes are
not parallel but crossed and the twist angle is 5 arc minutes. The
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function of kinematic errors caused by the misalignments mentioned
above 1is of a parabolic type and the maximum value of transmission
errors is 1.2 arc seconds.

(i1i) The gear axes are not parallel but intersected and form the
angle o = 5 arc minutes. The function of kinematic errors is of a

parabolic type and the maximum value of transmission errors is 2.0 arc

seconds.



4. Deviation of Pinion Tooth Surface by Tool with Cone or
Revolute Surface

4.1 Introduction

A new method for gyeneratation of the pinion of spur gearing is
developed. The involute spur gears with the crowned pinion tooth
surface are less sensitive to the gear misalignment, the bearing
contact has a favorable location and the kinematical errors are very
small and witn favorable shape. The crowning may be done by grinding
or shaving using a tool with conic surface, a surface of revolution or
a planar surface. The new method covers: (i) the theory of the
proposed method of crowning, (ii) determination of the pinion surface
generated by the tool, (iii) conditions of non-undercutting, (iv)
principal curvatures and directions of the pinion tooth surface, (v)
dimensions and orientation of the instantaneous contact ellipse,
(vi) the bearing contact and (vii) the kinematical errors due to
gear misalignment. Computer programs are developed in all stages
including the simulation of meshing and bearing contact TCA (Tooth

Contact Analysis) proyram.

4.2 Principle of Generation and Coordinate Systems

Consider two rigidly connect generating surfaces Ig and Zp. The

generating surface is a plane and generates the gear tooth surface

L, tnat is a regular involute surface. Surface Zp is a surface of

revolution. Initially we consider that Zp is a cone surface and

Zp and Za contact each other along a straight 1line that is the

generatrix of the cone.

Figure 4.2.0 shows the generating surfaces I, and Zp. Figure 1.4

G
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snhows a sketch of the tool that could be used for pinion generation.
Figure 4.2.1 illustrates the process of generation. While the rigidly
connected yenerating surfaces perform a translational motion, the
pinion and gear rotate about their axes 0 and 0, respectively. The
parameter of motion of the cutters, s, and the angles of rotation of

the pinion and the gear, ¢p and ¢G’ are related as follows
(4.2.1)

where ry and r, are the gear centrodes radii; the cutter centrode is
the straight line that is tangent to the gear centrodes. Point I is
the instantaneous center of rotation. Coordinate systems S; and S,
are rigidly connected to the pinion and the gear respectively. The
rigyidly connected tool surfaces (see Fig. 4.2.0) are represented in
coordinate system S_,; Sg is the fixed coordinate systen.

The ¢generating surface Ig (a plane) is covered with the set of
contact lines L;, -- the instantaneous lines of tangency of surfaces
Iy and I, (Fig. 4.2.2a). The location of these lines depends on the
value of parameter Lo Line Lgp is the line of tangency of generating

surfaces r,. and £.. Points My, M2,..., M

G P

of intersection of Lep and Lgo. The coordinate transformation from S

n represent the set of points

to S, is represented by the equation
- (G)
[r2] = [MZC][rC i (4.2.2)

nf . v(e2) = ¢ =0 (4.2.3)

Gl 6GI ¢G)
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Here: géb) (UG,eG) is the vector function that represents plane

ZG ; [Mzcj is the matrix that describes the coordinate transformation

trom 8. to Sg. Egquation (4.2.3) is called the equation of meshing of

C
the gear cutter and gear 2 [Litvin, 1987]}. gl“”istheunit normal of

Jenerating surface and Y(CZ) = Y(C) - Y(2)

is the relative velocity
for the process of yeneration. Contact point M; of surfaces I and
I, may be represented in coordinate system Sc as a function of

parameter ¢ @s follows

(G) - (G) =
r. r, (uG,eG) fz(uG,eG,¢G) 0 (4.2.4)
Fo(Ugreg) =0
Equations
(G) _ _(G)
Lo’ o= ry "(ugregdy Folugrog) 0 (4.2.5)
represent line Lgp in coordinate system Sge Equations (4.2.4)

represent the location of points My, Msseees M, on surface Ig as a

function of parameter Matrix Eqg. (4.2.2) and Eq. (4.2.4)

¢ -
represent tne set of contact points of gear tooth surfaces

D and I in coordinate system Sy These points are the centers of
the instantaneous contact ellipses that form the bearing contact of

gear 2 and pinion 1.

Using the matrix equation

- = [ (G)
lrf] = [ch][rC ] (4.2.6)



and Eg. (4.2.4) we may represent in coordinate system Sg the line of
action --- the set of contact points of ¥y and I, in the fixed

coordinate system.

Similarly, considerinyg the gyeneratiny surface I we may

pl
represent in coordinate system S, the 1lines of contact, Lpj- of

surfaces ZP and zl as follows

(p) _ (P) (p) ,(P1) _ =
r. = r, (uP,eP) n v = fl(uP,ep,¢P) =0 (4.2.7)
Here Q(P) is the unit normal of generating surface
Lpi Y(Pl) = Y(P) - Y(l) is the relative velocity for the process of

generation.

The pinion surface is represented by the equations

= & - (P)y _ ¢ : 1 (P) =
I.rl] - ll'llcj I.rc .I - Lbllfj[bifcjlrc ] fl(uplepl ¢P) - 0
(4.2.8)
Eguations
EéP) = EC(:P)(UP'BP)' F(UP’SP) =0 (4.2.9)

represent, in terms of up, and Opr the line of contact of surfaces
Ip and Ige in coordinate system S,. Contact point M; of surfaces
bRy and %, may be represented in coordinte system S. as a function of

parameter ¢p as follows

L(B) _ (P

L. L. (u,,0p) £y (uprbprop) = 0 (4.2.10)

= 0
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Usiny the matrix eqguation

, = L (P)

[ffj [Mfcj[rC ] (4.2.11)
and Bg. (4.2.10) we may represent the line of action of gears 1 and 2
as a function of op in coordinate system Sg. Equations (4.2.4) and

(4.2.6), and (4.2.10) and (4.2.11), determine the same line of action

but in different parameter, ¢. oOr , respectively.
G p

4.3 Tool Surface

The pinion generating surface is a cone and may be represented in

an auxiliary coordinate system S, as follows (Fig. 4.3.1)

<
]

uPsinacoseP y. = d-u_cosqg (4.3.1)

Qi

Jd.,Sinasin O<u_<
a P asingy P' Cosqo

N
1

The surface normal is represented by

BEa ara COSacoseP
N, = 33; X 33; = upsina sina (4.3.2)
COSasineP

The unit surface normal is (provided upsina # 0)

cos os
a C GP

[na] = sing (4.3.3)
Ccosaq sineP
26



Figure 4.3.2 illustrates the installment of the tool cone in

coordinate system Sge Axes of coordinate system Sy, are parallel to

axes of system S, and axes X, Yy, lie in plane z, = 0. The coordinate
a b b c

transformation from S, to S, is represented by the following matrix

equation
e P = g Tir ] o= M _10r] (4.3.4)
c cb ba’‘'"a ca a tT
Here
cos(a—wc) sin(a-¢c) 0 0
[Mcb] = —sin(a-wc) cos(a—wc) 0 0
0 0 1 0 (4.3.5)
0 0 0 1
- *. -
1 0 0 ~upSina
= *
[Mba] 0 1 0 —(d-uPCOSa) :
(4.3.6)
0 0 1 0
0 0 o 1 ]
Combininyg Ey. (4.3.5) and Eq. (4.3.6) results in:
- . * . -
cos(a-wc) 51n(a—wc) 0 —uP51n¢c—d51n(a—wc)
; = *
[Mcaj -sin(a—wc) cos(a—wc) 0 uPcoswc-dcos(a—wc)
0 0 1 0
i 0 0 0 1 ]
(4.3.7)

27



d _ b
CoSsa cos

*
Here u

P |XGC| -

Using Egs. (4.3.4), (4.3.7) and (4.3.1), we represent

the generating surface I, in coordinate system S, by equations as

P
follows
e R . * . -
() uP[51nacosePcos(a-wc) - cosa51n(a—wc)] = upsSiny,
{r ] _ . . _ . _ *
c uP[51nacoseP51n(a wc) + cosacos(a wc)] + upcosy,

u_.sinasins
pore P

(4.3.8)

It is evident that the point of the cone surface with the surface

*

parameter up = Up and bp = 0 coincides with the origin 0, of

coordinate system S,. The unit normal of cone surface is represented

in coordinate system S, by

(P), - :
[nc I = [LcaJ[na] (4.3.9)
Here
cos(a-wc) sin(a—wc) 0
[Lca} = -sin(a-wc) cos(a-wc) G (4.3.10)
0 0 1

Bquations (4.3.9), (4.3.10) and (4.3.3) yield
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cosacosePcos(q—wc) + sinasin(a—wc)

(P), _ e : - : -
[nc ] = cooacoseP51n(a wc) + singcos(a wc)

cosasineP

(4.3.11)

4.4 Pinion Tooth Surface

The equation of meshing of the generating surface Tp and the

pinion tooth surface is represented by

n(P) y(P1)

~

n(P)l (vPlyll)y =g (4.4.1)

We may also use the equation based on the condition that the
contact normal must intersect the instantaneous axis of rotation I-I

(Litvin, 1987). Thus we obtain (Fig. 4.2.1)

x -xP) y _,(B) 5 _ (P
C C

c ‘¢ c c
_~ ¢ = = (4.4.1a)
n(P) n(P) n(P)

cX cy cz

Here: (Xyr Yoo ZC) are the coordinates of a point that lies on axis
I-1; XéP), YéP) and ZéP) are the coordinates of the cone surface; ngy,

Doy and ng, are the projections of the surface unit normal. Here

(Fig. 4.2.1)

c 1¢p Y, =0 (4.4.2)

Equations (4.4.1la) (4.4.2), (4.3.8) and (4.3.11) yield
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fl(uP,eP,¢P) = r1¢P[—cosacosepsin(a—wc) + sinacos(a—wc)]
-u,.cose, + u*(cose cosza + sinza) = 0 (4.4.3)
P P P P * e
Here (Fiy. 4.3.2)
*
‘ u. =a =94 __Db (4.4.4)
P c coOSaq cosy,

The line of contact Lpg of generating surfaces Ip and I,

(Fig. 4.2.0) is generatrix of the cone surface determined with

8, = 0 (4.4.5)

Equations (4.3.8), (4.4.3) and (4.4.5) represent the location of the

instantaneous contact point of surfaces Iy and I, on surface Tp as

P. . 2 P . P
(4 04'6)

The coordinate transformation in transition from S to Sg¢ is

represented by the matrix eguation

o (P)
(rel = [ Jlr ) (4.4.7)

where (Fig.4.2.1)
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1 0 0 -r,ép
[Mfc] = 0 1 U ry (4.4.8)
0 0 1 0
0 U 0 1
Equations (4.4.6) to (4.4.8) yield
= ~y 2 = - i 3 =
Xe = L ¢pCO8T Y, Ye = T4 r,)¢pSiny cosy, 2e 0 (4.4.9)

Equations (4.4.9) represent the line of action as a tangent to the
base cylinder of radius rp; that lies in plane z¢ = 0 and passes
through point I (Fig. 4.4.1).

The pinion tooth surface may be represented in coordinate system

Sy as the set of contact lines of surfaces ZP and Xl. Thus we obtain

(ey1 = g 0 ielPl = o 10 (4.4.10)

£1(Upréprop) = 0

Here (Fiy. 4.2.1)

cos¢p sin¢P 0 0

[le] = —31n¢P cos¢P 0 0 (4.4.11)
0 0 1 0
0 0 0 1

Equations (4.4.10), (4.4.3) and (4.3.8) yield
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<
1]

1 uP[cosePsinacos(a—¢c+¢P) - COSasin(a-¢c+¢P)]
*
—up 51n(¢c—¢9) + rl(—¢Pcos¢P+51n¢P)

Y = - uP[cosePsinasin(a-wc+¢P) + cosacos(a-wc+¢P)]
*
+oug cos(wc—¢P) + r1(¢P51n¢P + cos¢P)

N
I

u sin¢Psina

1 P
£1(Uupr8prdp) = ry¢pl-cosacoseysin(a-y, ) + sinacos(a=y )]
*
-UPCOSSP + UP(Cosepcosza + sinza) =0 (4-4.12)

Bquations (4.4.12) are equivalent to the representation of the pinion
surface by the vector function El(uP’eP’¢P) and the equation

of meshing fl(u 0. Taking it into account that

PISPIC,"P)
fl(uP,eP,¢P) = 0 is linear with respect to the parameter up, it is
easy to eliminate up and represent the pinion surface in two

parametric form, with the parameters, 6, and op

P
The intersection of the surface by the plane z, = 0 represents a
regyular involute curve. Eguations of this curve may be derived from

the surface Eg. (4.4.12), taking it into account that

bp = 0 and Up=Up = ryép8ing, (4.4.13)
Thus, we have
X, = rl[—¢Pcos¢ccos(¢P-¢c) + sin¢P] (4.4.14)

¥y = rl[¢PcoswCsin(¢P—¢c) + cos¢P]
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Cutting the pinion tooth surface by a plane zj = const, we obtain the
cross-section of the pinion tooth surface that is deviated from a
regular involute curve (Fig. 4.4.2).

It will be shown later that the kinematic errors caused by the
gyear misalignment can be of two types that are shown in Fig. l.2a and
l.2b. Kinematic errors shown in Fig. 1l.2a correspond to the case when
tne transformation of rotation 1is interrupted and the gear tooth
surfaces are out of contact. To avoid the appearance of such
kinematic errors, a surface of revolution that slightly deviates from
the cone surface is actually used. The determination of curvatures of
the surface of revolution is a subject of optimization. Since a
surface of revolution is used instead of a cone surface, the crowned
pinion surface deviates from a regular involute surface in all cross-
sections including z; = 0, the middle cross-section of the tooth

surface.

4.5. Conditions of Pinion Without Undercutting

General Approach

The proolem of undercutting of the pinion tooth surface by
crowning is related with the appearance on the pinion tooth surface of
singular points. It 1is known from differential geometry that the
surface point is singular if the surface normal is equal to zero at
such a point. Litvin, proposed a method (Litvin, 1937) to determine a
line on the tool surface which will generate singular points on the
surface that 1is generated by the tool. This 1line designated by L
(Fig. 4.5.1) must be out of the working part of the tool surface to

avoid undercutting of the pinion by crowning.
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The limiting L of the tool surface is determined by the following

equations
e = Py e ) (4.5.1)
£ (Up8p00,) = 0 (4.5.2)
F(Upr6,,4,) = 0 (4.5.3)

Vector Eq. (4.5.1) represents the tool surface, Eg. (4.5.2) is the

equation of meshing (see Eq. (4.4.3)) and Eqg. (4.5.3) follows from the

requirement that (Litvin, 1987)

L(P) (P) (P) (P)
axc axc V(Cl) axc axc (c1)
3u 30 “Vex 3u 30 “Vex
P P P P
L (P) (P) _ (P) (P)
g 9Y¢ _y(c1) = %% 9Zq _y(c1)
BUP aeP cy aUP aeP cz
i S _ M g 0 S I
30, 56, 70, at 30, 36, 7¢p" dE
(P)
0¥ g P (C1)
30, “3e6. Vey
P P
(P) (p)
dZ 8zc —V(Cl) = 0
BUP aep cz
3tl 3fl _ afl §¢P (4.5.4)
0, 56, 3y ° dt
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Derivation of Equation

Relative velocity YéCI) is to be represented in coordinate system

b, as:
(cl) _ y(c) _ (1)
Yc Zc Yc (4.5.5)
where YéC) is the velocity of the cutter and Yél) is the velocity of

the pinion at generating point. Using the sketch in Fig. 4.2.1, we

get
ds
at I 9p
v =] o - 0 (4.5.6)
0 0
vil) + 00 4.5.7
~C = Wp XL, cV1%%p (4.5.7)

beriviny Eg. (4.5.7) we substituted the sliding vector Wp that passes

through 0; by the equal vector tnat passes through O, and the vector-

noiment Ucdlx%P'

Here:

o
[at

€
]

o

€

O
|

wp 0] = | -r; (4.5.8)

—
o

Equations from (4.5.6) to (4.5.8) yield
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(P)
Yo
(C1) _,(P)
0
(P) (P) ) . ‘ .
where X4 and Yo are represented by equations (4.3.38). Equations
(a4.2.9), (4.3.3), (4.4.3) and (4.5.4) yield
- - . _ 2 _
Fl(uP,eP) = mym,q (m2+m1m4)qp m3m5q+m4p =0 (4.5.10)
Here
_ EEFOSG
97773
*
Il
P d/cosa
g = sinasin(a—wc)cosep+ cosacos(a-wc)
m., = sinocos(a-yp_ ) — cosasin(a-y )cos36
2 C C P
m. = {sinacos(a-¢_ ) - cosasin(oa-y_)cos’ ]3
3 o c P
m, = sinacos sin29
4 ¢4 S0 P
o il?osa
5 d
BFl
Using Egq. (4.5.10) and taking it into account that EYR # 0, we
P

can represent u, as function

p

(eP). Undercutting will be avoided if
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d
UP(GP) E(E(x (4.5.11)
The analysis of &Etg. (4.5.10) yields that inequality (4.5.11) is
satisfied 1if the conditions of non-undercutting of the pinion

generated by a reyular rack cutter are satisfied.

4.6. Principal Directions and Curvatures of Tooth Surfaces

Introduction to Pinion Principal Directions and Curvatures

The direct determination of pinion principal directions and
curvatures requires complicated derivations. A simplified approach
for the solution to this problem has been proposed by Litvin, in

196v. The main idea 1is as follows:

Consider that the tool surface Ip generates surface £, as the
envelope of the family of surfaces Ipe Let Lp; be the instantaneous
line of contact of £, and £, and M 1is a point of this 1line. We

P 1

consider as yiven the principal curvatures and directions of I, at any

P

point and also the parameters of motion of surfaces I and Ly being in

P

mesh. Then the principal curvatures and directions of the generated
surface £, can be expressed in terms of principal curvatures and

directions of the generating surface x, by using the equations that

) 4
have been derived by Litvin, 1969,

Principal Curvatures and Directions of I

p
The tool surface is a cone surface and its principal directions

coincide with the direction of the cone generatrix and the direction
that is perpendicular to the cone generatrix. The Rodrigues' formula
(Ege 4.6.1) can be wused to find the principal curvatures and

'3
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directions.

<p,pVe = R (4.6.1)

Here: are the principal curvatures of surface. Ve is the velo-

1,11
city of a point that moves over a surface and Qr is the derivative of
the surface unit normal n, when n changes its direction due to the
motion over the surface.

Eguation (4.6.1) vyields the following expressions for the

principal curvatures and directions (see Eqg. (4.3.1) for the tool cone

surface I, represented in coordinate system Sa)

-sineP
or or
%_([P) = —a-—gg ¥ | ’a-e—a l = 0 (4.6.2)
P P
coseP
(P) - _ 1
“1 uPtana (4.6.3)
cosf.sina
or SrP P
o
e = : = -COSa (4.6.4)
<~I1 auP auP
51neP51na
SBY 2y (4.6.5)

II

The neyative siyn for «; indicates that the curvature center is
located on the neyative direction of the surface normal.

The principal curvatures are invariants with respect to the used
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coordinate system. The unit vectors of the principal directions,

e~gP) (P)

amd €11 ¢ may be represented in coordinate system Sg by using the

following matrix equation

(P) - (P)

(P) (P) . -
e I, II]a and [eI,II]f are vectors represented in S5, and Sg,

Here:
respectively; matrix [L,;] 1is represented by Eq. (4.3.10); matrix
[Lgol is the 3x3 unitary matrix (see matrix Eqg. (4.4.8)).

Equation (4.6.6) yields

-sineg cos(a-wc)

P
[e(P)] = sine_sin(a-vy ) (4.6.7)
I f P c e
cos8y
cosepsinacos(a-y.) - COSaSin(a—wC)A
(e ii)]f = | —cosepsinasin(a-y ) - cosacos(a~-p,) (4.6.8)

sing_sin
eP o

Principal Curvatures and Directions of Pinion Tooth Surface

The determination of principal curvatures and directions for the
pinion tooth surface is based on the following equations (see Litvin,
1967)

2b.,b

tan Zc(Pl) = - = 13 23 (4.6.9)

(P) (P)
b53-by5-(x k11 1P3
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2 2 _, (P)_ (P)
(1) (1) _ P237Py3=(kp "mkpp b3
Kip = K1 = P1) (4.6.10)
b33cos2o
2 2
b7, +b
(1) (1) _ (P) (P) ~13 723
Kot + K1 = Kg + K11 + . (4.6.11)
33
Here: K§P) and K£§) are the principal curvatures of the tool surface
Lpi g&P) and g§§) are the unit vectors of the principal directions on
. . (1) (1) (1) (1) R
Xp (Fig. 4.6.1); K1 and ki1 ' €71 and erp are the nrincipal

curvatures and directions on the pinion tooth surface Tqi and c(Pl) is

measured counterclockwise from c

(P) o o1 (Fig. 4.6.1). The

I
coefficients bj3, byy and b3 have been derived from equations
represented in [Litvin 1987] but modified for the case when a rack

cutter generates a gear. The expressions for by3, by3 and b33 are as

follows
(P) _(P) (P1)
b3 S11°¥p K1 0 V1
_ _ (4.6.12)
_.(P) _ (P) (P1)
bosy S1 Y 0 K11 ViI
- (P) (P1)
33 = [Rup¥e,’) *+ [oe Vim0l
“AB) g (PL)y2 0 (P) (P1) 2 _ﬂi me Inr¢Plk ] (4.6.13)
K1 I K1 ‘V1r m, 1P a2 & T
. _ V1 nivp
wnere mlP = -

$
The vectors that are wused in Egs. (4.6.12) and (4.6.13) are

Ne

represented in coordinate system Sg (Fig. 4.2.1); if’ if and kf are

|
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tne unit vectors of coordinate axes of system Sg. The expressions of

tinese vectors are as follows

w, = kg (4.6.14)

is the angular velocity of the pinion being in mesh with the rack

cutter

(P) _ _ .
Vtr = “rlif (4.6.15)

is the transfer velocity of a point of the rack cutter that performs

translational motion; ry is the radius of the pinion centrode

1 ] k “Y¢
I T T (4.6.16)
Xg Y¢ Ze 0

is the transfer velocity of the pinion. The term, "transfer velocity"
means that the velocity of a point that is rigidly connected to the

tooth surface 1is considered. Such a point performs the motion with

the tooth surface

YeTTy

(P) (1)

 ARREEE TR AL AR R (4.6.17)

is the "sliding" velocity--the velocity of a point of the rack cutter
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with respect to tie same point of the pinion. Vector Y(Pl) can be

represented in terws of components x, and y. using matrix Eg. (4.4.8)

that describes the coordinate transformation from Sc to Sf. Then we

obtain

Xg = X, = ryép Y = Y. * Xy (4.6.18)

Eguations (4.6.17) and (4.6.18) yield

Yo
(P1) _ _
v = w xc+rl¢P (4.6.19)
0

Tne principal curvatures of the cone that is rigidly connected to the

rack cutter are represented as

1 (pP) _ ,
I u_tana kit ~ U (4.6.20)

The unit vectors of principal directions are designated by

g§P) and eii). Components Vipl) and V&?l) are represented as follows
(pl) _ (P1) _(P) s(P1) _ (Pl) _(P)
After substitution we obtain
. *
wsineg u , r,¢
_ P _ P 2 1%p o .
b13 = =T [1 E; cos“o + _H; cosasin(a wc)] (4.6.22)
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b23 = - mcoseP (4.6.23)

( _ 2
Dyy = w (kl+k2+k3+k4) (4.6.24)
where
_ .2 . * .
Kl = upsin®g,cosasina - UPSInaCOSa(l-CObGP) (4.6.25)
k2 = rl¢P[cosePc05acos(a—wc) + sinasin(a—¢c)] (4.6.26)
k3 = rl[COSOPCOSaSin(a—wc) - sinacos(u—¢c)] (4.6.27)
sinzeP * . 2
ky = EEEZHE L(uP—uP)COSa - rl¢P51n(a—wc)] (4.6.28)

For tne contact point located in the middle section of the pinion we

have bp = 0 and
= - _ 2 _ .
b13 =0 b23 = W b33 = [r1¢Pcosu;c r1s1nwc] (4.6.29)

Then we obtain the following expressions for the pinion principal

curvatures and directions

(P1) _ (1) - (P)_ _ 1
o 0 1 1 utany,
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AL (B) 1 _ -1

= kg . = = . -
I1 Ir rlslnwc r1¢Pcos¢C r151n¢c rl¢Pcoswc
= (P) (1) _ (P) (L) - .(P) -
n =1 €1 T &1 €11 11 (4.6.30)
The principle curvature K&%) is the same as the principal curvature
of a regular involute surface. However K§l) differs from zero

because the pinion is generated by a cone but not a plane as in the

case of a regular involute surface.

Gear Principal Curvatures and Directions

The determination of the gear principal curvatures is based on
the relation between the principal curvatures for spur involute
gears. Figure 4.6.2 shows that two mating involute shapes are in

tangyency at point . Let us designate the principal curvature for the

pinion by K§l) and Ki%) where (see Eq. 4.6.29)
(1) _ 1 (1) _ 1
K = - — = - - (4.6.31)
I utampC ‘11 r1s1nwc—rl¢Pcoswc

(1)

The negative sign of K1 and Kg%) means that the radii of curvatures

are opposite to the direction of the surface normal. The principal

(2)

gear curvature « = 0. The radii of curvature of spur involute gears

I
: (1) _ _ 1
are related as follows (Fig. 4.6.2) where kep = TSIy CF 36087
1 c "17P c
1 . 1 _ .rb1+rb2 ) r1+r2 ) N1+N2 (4.6.32)
| (1) (2) tany siny 2Psiny <9
“11 11 ¢ ¢ c
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Then we obtain

+r N, +N

1 1 1 72 1

eI 2psing | (1)'
|KII c |KII

1 1

(2) = siny
1 c

(4.6.33)
K

The angle 0(21) between the principal curvatures is equal to zero.

4.7. Contact Ellipse and Bearing Contact

The dimensions and orientation of the instantaneous contact
ellipse can be determined on the basis of equations that have been

developed by Litvin (Litvin et al. 1982, and Litvin 1987). The input
(1) (1) ioq 0y ,(12)

data for the computation is: Kp 1 oKpg ’ 2 and ¢ where
K§l) and K§;) are the principal curvatures, 0(12) is the angle formed
by the unit vectors of principal directions, g£1) and e£2) and ¢ 1is

the elastic deformation of the contacting surfaces at contact point.
The bearing contact is formed by the set of instantaneous contact

ellipses that move over the gear tooth surfaces in the process of

meshing. In our case, when the crowned pinion is meshing with a gear

(1) _ _(2) (12)
I ~1 o

without misalignment, e and = 0 (Fig. 4.7.1). The

axes of the contact ellipse are directed along the n-axis and

g-axis , respectively. Generally the orientation of the contact
ellipse is determined with the angle aje In the case where

0(12) = 0, o

1 is equal to =zero. The equations to be used for the

computation are as follows

A=l (Do (2

ook = ey, (4.7.1)



b= 5 [Kil)-x(sz) + ggmg, | (4.7.2)
where

Kil) = Kgl) + K‘&%) K(ez) = K‘%z) + K‘%%) (4.7.3)

B N 1 (4.7

a” = |g|1/? " = |£|1/2 (4.7.5)
The equations for xéi) and K§§) (i=1,2,) have been represented 1in

Section 4.6. Figure 4.7.2 illustrates the bearing contact for spur

gears with the crowned pinion tooth surface.

4.4. Simulation of Meshing and Determination of Kinematical Errors

Coordinate Systems

The simulation of meshing 1is a part of the computer aided TCA
proyram developed by the authors. The simulation of meshing is based
on eguations that provide the continuous tangency of contacting
surfaces.

Henceforth we will use the following coordinate systems: (i) Sgf
that is rigidly connected to the frame and (ii) an auxiliary
coordinate system S; that is also rigidly connected to the frame, and
(iii) systems S; and S, that are rigidly connected to the pinion and
the gear, respectively. The origins and coordinates axes zg¢ and z; of

coordinate systems Sg and S; coincide with each other (Fig. 4.8.la).
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Axis z¢ is the axis of rotation of the pinion. Also, the origins and
coordinate axes zp and z, coincide with each other and z, is the axis
of year rotation (Fig. 4.8.1lb). The errors of assembly of the gears
are simulated with the orientation and location of coordinate system
S, with respect to Sg. Figure 4.8.2 shows the orientation

(a) The year axes are crossed (Fig. 4.8.2a)

-COS Ay 0 sinay 0

[thj = U -1 0 C
sinAy 0 COS Ay 0 (4.8.1)

0 0 0 1

(b) The gear axes are intersected (Fig. 4.8.2b)

-1 0 e, 0

[thj = 0 -COS AS -sinA$ C
0 -sinAé COSAS 0 (4.8.2)

0 0 0 1

Pinion Tooth Surface Egquations

The pinion tooth surface has been represented in coordinate
system 8; by Eq. (4.4.12).The coordinate transformation form S; to Sg

is represented as follows

(1), .
[rf ] = [Mfl] [r1] (4.8-3)

Here
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SCET Y sin¢1 0 01
(Mo,1 = -sing COS ¢ 0 0
£l ! ! (4.8.4)
0 0 1 0
0 0 0 1

where ¢, is the angle of rotation of the pinion being in mesh with the
year.
Egquation (4.4.12) represent the pinion tooth surface in a three-

parametric form in terms of parameters up, 6, and op where ¢p is the

P
angle of rotation of the pinion being in mesh with the coned cutter.
These parameters are related by the equation of meshing and only two
of them are independent. It is easy to eliminate parameter up and

represent the pinion tooth surface in Sy in the two-parametric form.

Thus:

£, = £(éps0p) (4.8.5)

where $p and bp serve as the surface parameters. The pinion tooth

surface unit normal can be represented in coordinate system S¢ as

- .
Hh
1

(Lepd Ingl ‘ (4.8.6)

The 3x3 matrix [Lgyl can be developed from ([Hg;] Dby eliminating the
last row and the last colunmn. The surface unit normal, nys is

represented in S; by the following matrix equation

(ny1 = 1L 1 nlP1 = m e 1P (4.8.7)
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Here: QéP) is represented by Egs. (4.3.11), [Lg,] is the 3x3 unitary

matrix and [Lyg] is the 3 x 3 submatrix of matrix [Mjg] given by Edg.

(4.4.11).
The final expression for Qél) is as follows
(1), _ (P)
Here: [Lfcj is tne 3x3 unitary matrix [I], but [Lfl] [Llf] # [I}

because the elements of these matrices are expressed in different

terms - and $1

9p

Gear Tooth Surface Equations

The gear tooth surface is a regular involute tooth surface and

may be represented 1in coordinate system S by equations that are
2

similar to Egq. (4.4.14)

X, = T, [—¢Gcoswccos(¢G—wc) + sin¢G]
Y, = r2[¢Gcoswcsin(¢G—¢c) + cos¢G]

z, = A (4.8.9)

where ¢ is the angle of rotation of the gear being in mesh with the

rack cutter. The gear tooth surface unit normal is represented by the

eguations
N, ar . ar .
~2 ~2 ~2
n., = - N, = =—= X —— (4.8.10)
~2 |§2| ~2 T 34 0k

Equations (4.8.9) and (4.8.10) yield
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[ —cos(¢G-¢c)‘
(n,i = sin(¢.~v )
2 G e (4.8.11)
0

To represent tne gear tooth surface and its wunit normal in

coordinate system S, we use the following matrix equations (Fig.

4.3.2)
(2) . _ . (2), _
I cos¢, -sin¢2 0 0]
M. = sing. COS¢. 0 0
h2 2 2 (4.8.13)
0 0 1 G
0 0 0 1

where ¢, is the angle of rotation of the gear being in mesh with the

pinion. Equations (4.6.9), (4.3.11), (4.2.12) and (4.83.13) yield

X = - r2{¢Gcoswccos[(¢2—¢G) + oy )l sin(¢2'¢G)}

yp© = = ry{egcosy sinlle,=c) + ¥ )] - cos(é,-¢s) }
z1(12) - (4.8.14)
—cos[(¢2—¢G) + wc]
C(2). .
(n i = -sin[(¢,~¢.) + ¢ _1]
h 276 c ((4.3.15)

0
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These equations with parameters ¢, = ¢, T 0, zéz) = A = 0 determine
point M with coordinates (0, r,, 0) and the surface unit normal at M
with components (—coswc, - sinwc, 0) (Fig. 4.8.3).

To determine the year tooth surface equations and the surface

unit normal in coordinate system Sg we use the following matrix

equations

(2)
£ ]

ir = g 1iel?)] m{?)) = (L 1in{?) (4.8.16)
Matrix [Mg,] (see Egs. (4.8.1) and (4.5.2)) describes the coordinate
transformation from Sy, to Sy for the case where the gear is misaligned
with respect to the pinion. Figure 4.8.4 illustrates the case where
the years are not misaligned, the shortest distance of gear axes

C = r; + r, and the tooth surfaces of the pinion and the gear contact
each other at point M. The misalignment of the gear will not cause

the surface contact at the tooth edge since the pinion tooth surface

is crowned and deviates from a regular involute surface.

Equation of Tangency

The contact of gear tooth surfaces is simulated in the developed

TCA program by the following equations

(1) (2)
Le  (9pr0509;) e (0grtrdy) (4.8.17)

Q(l)(‘bPIePld)l) Q:((_:Z)(¢GI¢2) (4.8.18)

At the contact point vector Eg. (4.8.17) provides the equality of
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position vectors and vector Eqg. (4.8.18) provides the equality of
surface unit normals. Vector Eg. (4.8.17) provides three independent
scalar equations that relate ¢prbpréyr ¢gr A and 4,. However, vector
Eq. (4.8.18) provides only two independent scalar equations since

gél) and Qéz) are unit vectors and |Qé1)| = 'EEZ)I = 1. Thus Egs.

(4.8.17) and (4.8.18) yield five independent scalar equations as

follows
fi(¢PIBPI¢lI¢GI}\I¢2) = O (i=l’2,o-o’5) (408.19)

Equation system (4.8.19) 1s the expression in implicit form of
functions of one variable, for instance of 7 The Theorem of Implicit
Function System Existence states:

(i) Consider that a set of parameters

P (¢P,ep,¢1,¢G,x,¢2) (4.8.20)

satisfies Eg. (4.8.19) and that the Jacobian

D(f,,£,,£,,£,,£.)
J = B 172 3" 4" 5 +# 0 (4.8.21)
¢P’9P'¢GI)\I¢2)

(the partial derivatives are taken at point P°).
(ii) Then, equation system (4.8.19) can be solved in the

neighborhood of point P° by functions

o,(01) s opl o)/ 0p(dq)s ogloq)s Aleq)eC (4.8.22)
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The designation cl means that the functions have continuous
derivatives at least of the first order. Knowing function ¢2(¢1), we

can determine the function of kinematical errors

- 1 .
A¢Z(¢l) = ¢Z(¢l) - ﬁ‘; ¢l (4.8.23)

4.9 Modification of Generating Surface ZP

Basic Relations

The proposed method of crowning provides conjugated year tooth
surfaces and a localized bearing contact. Using the TCA program it
can be proven that the kinematical errors caused by the gear
misalignment are on a very low level. However, the shape of the
function of kinematic errors is unfavorable, similar to the shape that
has been represented in Fig. 1.2a. This disadvantage can be avoided

by the modification of generating surface I The authors proposed to

P.
use a surface of revolution instead of a cone surface. Figure 4.9.1

shows the axial section of generating surface I, that is an arc of the

P

circle of radius p. Controlling the magnitude of p, we can provide the
favorable shape of the function of kinematical errors (Fig. 1l.2b) and
also control the level of kinematical errors. The solution to this
problem is based on the relation between the principal curQatures and
directions for the contacting surfaces and the derivative

mél = H%I (m21¢1)). This relation (Litvin, 1987) 1is represented as

follows
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by bPyy Py

. . . C o (4.9.1)
21 22 23

by Dy, bgy

Consider that the tooth surfaces of a crowned pinion and a gear are in
contact at point M that coincides with the instantaneous center of
rotation (Fig. 4.5.4). It 1is assumed that the gears are not
misaligned. In this case the coefficients of determinant (4.9.1) are

expressed as follows

- _ (1) (2)
byp Pz kp ot oKy 0
B ) _. (1) (2)
P12 Pz v K1 T oK
. _. (1) (12)
P13 | _ 211t 8
. - (1) (12)
P23 S S
= - (1) (2), _ (2) 5 (1) (1),2_ . (1) _
Paz = 70 Dle ixV ) = (e ik, T+ Tet T gy (nxky) e (27 -Re)
(4.9.2)
where
m = f.iz. m2 = dlnzl = d (d¢2)
. 14 . -
21 d¢ 21 d¢l d¢l d¢l
Equations (4.3.11), (4.6.8), (4.6.9) with bp = 0 yield (see Fig. 3.4)
cosy,
n = siny,
0
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[0
et = | 0
1
[ cosy
el2) - -Sinwc
R11I c
|0
.y y t\]
S o (L) (2) w(l)(1+Fl) k
@ 2 ~ iyt

where Nj and N, are the number of teeth of the pinion and gear
R

Re = (rp+r))le

where rj and r) are the radii of the pitch circles

(1) _ )
Le ) = T
gD o () (D g
(2 o (D (D g Dy

substituting Bgs. (4.9.3) into Eg. (4.9.2), we obtain

| (1), (2
Py1 P | _ | v T 0
, _ (1) (2)
Pyy by v K11 T K11
byy = 0
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N
= (1) 1
b23 = - (1+N ) (4.9.4)

(2) ) I N
033 = w rlL(1+N;) 51n¢c + 159 NI coswc]

Equations (4.9.1) and (4.9.4) yield the following relation between the

derivative m£1 and the principal curvatures

N N
1,2 _ 1 : _ (1) (2)
(l+ﬁ—) (1+ﬁ7) s1n¢crl[ K17 + K11 ]
. 2 2
m;. = (4.9.5)
21 N
r,Ccosvy ~—[—K(1) + K(2)]
1 ch IT II
Here (see Egs. (4.6.31) and (4.6.32))
K(l) = K(P) S K(Z) = 1 = E;/Nz-— (4.9.6)
11 II rlsimpc II rzsimpC rysiny e
Nl Nl Kgi)
l'ﬂél = (l+tr) N— tanq} (4-9.7)
- . C N
¢ e TET S p———
N2 r151nwc II

(p) _ _ 1
K11~ 5

where p is the radius of the arc circle that generates the surface of

revolution.

wn
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There are two important particular cases for the application of
Egq. (4.9.7) (1) The generating surface Zp is a cone. Considering
that p + » and the generating surface becomes a cone, we obtain that

mj, = 0 1f the gears are not misaligned. In this <case, when

misaliynment exists, kinematic errors will occur as shown in Fig. 1.2a

which are very undersirable. (ii) The generating surface Ip is a
revolute surface, p is positive, K(P) < 0 ('x(P)l = l) and

I1 11 p
m§1< 0 (mél is taken at point M). Then the function of kinematic

errors will be similar to that as shown in Fig. 1.2b even when the
gears are not aligned. It will be shown below that by choosing an
appropriate value for p it is possible to keep the kinematical errors

of misaligned gears on a very low level.

Surface of Revolution Equations

The surface of revolution is yenerated by an arc of circle of
radius p. The arc parameters provide a common normal for the cone
surface and the surface of revolution at their point of tangency M

(Figy. 4.9.2a). The circular arc 1is expressed 1in the auxiliary

coordinate system S, as follows

*

X, = plcos(a+B)—-cosal] + uPsina
= u*sina - 2 sinB( +§)
P P )
y = plsin(a+8) - sinal +,_JQ__ cosa
e cos vy
= i B B
= ESEE: coso + 2pbln2 cos(a+5)
z, = 0 - (4.9.9)
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Tne unit normal to the arc at point M is also the normal to the cone
surface and surface revolution at this point and it can be expressed

as follows

cos(o+R) (4.9.10)
[ne] = sin(a+8)
0

The surface of revolution 1is generated by rotation of the
circular arc about the y,-axis and may be represented in coordinate

system S, as follows

[at
[}

(L Jlr.] ‘[n_] = [Lae]([n] (4.9.11)

Here (Fiy. 4.9.2b)

coseP U sineP
LLae] = 0 1 U (4.9.12)
—51neP J coseP
Then we obtain
Cx ] [ [U*sina - 2psin£sin(a+§)]cose i
a P 2 2 P
Y ) ~-— COSqg + 2psin8cos(a+£)
a COS 2 2 (4.9.13)
Z [U*sina - 2psin£sin(a+§)]sine
L “a d . P 2 2 P -
cosePcos(a+6)
[na] = sin(a+8) (4.9.14)

sinePcos(q+3)
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Tne installment of the yenerating surface in coordinate system S,
is the same as it was described in Section 4.3. The yenerating

surface and its unit normal are represented in S, as follows

L (P)y 2o =
lrg "1 = [Mca][ra] = (4.9.15)

2psin [sin(a-wc)cos(a+ %) - cosﬁPcos(a-wc)sin(a+ g)] T

* Nl

+ U sinacos(a-wc)(cose -1)

o

P

2psin [cos(a—wc)cos(a+ g) + cos9 sin(a-wc)sin(a+ g)]

P

* Nlw

- U,sinasin(a—wc)(cose -1)

o

P

*
[UPsina - 2psin

sin{(a+ %)]sine

ol

P -

in{"1 = (1 ng) =
(4.9.16)

i cosepcos(a+3)cos(a—wc) + sin(a+3)sin(a—wc) i

-Ccos®8 cos(a+3)sin(a—wc) + sin(a+3)cos(a—¢c)

P

sinePcos(a+B) i

Pinion Surface

The pinion surface is represented in coordinate system S; as

follows



leq) = (M1 iMg 1ir ) (8 s0ps0p) = O (4.9.17)

Here £(B8,6 = 0 is the equation of meshing (see Section 4.4)

PI ¢P)

represented as follows

*

f(B,9P¢P) = r;singcosse, - uP51na51n(a+3)(coseP— 1)

- r sin(a+B)cos(a-y_ ) - cosd, cos(a+B)sin(a-y_ ) = 0
c c

(4.9.18)

1%p p

TCA Program

Followiny the procedure of derivations described in Section 4.3,
we can now develop the TCA program for the case where the generating
surface I, is a surface of revolution. Using this program, we can

determine the kinematical errors caused by the gear.

Example
Po=10 Ny = 20, Ny = 4u C = 1.01(ry+r,) Ay = 5°
v, = 200 a = 800 p = 500 in d = 0.176 in

The results of computation of kinematical errors are shown in
Fig. 4.9.3. It was found that the function of kinematical errors has

the desired shape, and the maximal value is 0.16 arc sec.
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Conclusion

The authors have developed: (i) The basic principles for the
optimal yeometry of <crowned spur gears; (ii) New methods for
generation of crowned pinion tooth surface; (iii) Tooth contact
analysis programs for the simulation of meshing and bearing contact.

The features of the optimal geometry of the crowned spur gears
are as follows: (i) the gear 1is provided with a regular involute
surface; (ii) the pinion tooth surface is deviated from a regular
involute surface to provide a localized bearing contact and reduce the
sensitivity of the gears to their misalignment; (iii) the function of
transmission errors of the misaligned gears is of a parabolic type
witn the small level of maximal errors, less than 5 arc seconds.

The new methods for generation of the crowned pinion surface need
simple tools that have to be provided with a generating plane or a
surface of revolution that slightly deviates from a cone surface. The
developed TCA programs provide the information on the bearing contact

and the transmission errors for the misaligned gears.
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PROGRAM I
KINEMATIC ERROR OF A REGULAR INVOLUTE GEAR MESHING
WITH A PINION CROWNED BASED ON PREDESIGNED
KINEMATIC ERROR FUNCTION

% % 3 ¥ %

AUTHORS: FAYDOR LITVIN
JIAO ZHANG
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PURPOSE

THIS PROGRAM IS USED TO CALCULATE THE KINEMATIC ERROR OF A CROWNED
PINION MESHING WITH A REGULAR INVOLUTE GEAR. THE PINION IS
CROWNED BASED ON PREDESIGNED KINEMATIC ERROR FUNCTION.

THIS PROGRAM IS WRITTEN IN FORTRAN77. IT CAN BEE COMPILED BY V
COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8(A-H,0-2)
DIMENSION Z(99),ERR(99),ERROR(99)
COMMON /BLOCAl/ X(11),Y(10),4(10,10),Y1(10),IPVT(10),WORK(10),

+ EPSI,DELTA,NC,NE,NDIM
COMMON /BLOCA2/ ALPHA,RKSI,RP,RG,RMPG,RL,SA,CA,DR,CK,SK,HDC,C,
+ s(3,3),SF,CF,SAK,CAK,Al,XP,YP,ZP,XG,YG,R,CONST(9)

DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND OUTPUT
DEVICES
IN=5
LP=6
(2) NDBUG IS USE TO CONTROLL THE AUXILIARY QUTPUT FOR DEBUGGING
NDBUG=2
(3) NC IS THE UPPER LIMITATION OF REPEATATION FOR SOLVING NONLINEAR
EQUTIONS;
EPSI IS THE CLEARANCE OF FUNCTION VALUES WHEN THE FUNCTIONS
IS CONSIDERED AS SOLVED (ALL FUNTIONS HAVE FORMS OF F(X)=0);
DELTA IS THE RELATIVE DIFFERENCE FOR TAKING DERIVATIVES
NC, EPSI AND DELTA MAY BE CHANGED WHEN SOLUTIONS ARE DIVERGENT
OR LESS ACCURATE

NC=100
DELTA=1.D-3
EPSI=1.D-12
(4) OTHER PARAMETERS(DON'T CHANGE)
NDIM=10
NE=5

DR=DATAN (1.D0) /45.D0
DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)
(1) PINION AND GEAR: PN=DIAMETRAL PITCH; N1=PINION TOOTH NUMBER;
RMPG=TOOTH NUMBER RATIO(GEAR TOOTH NO./N1);

RKSI=PRESSURE ANGLE; HDC=HEIGHT OF DEDENDUM OF PINION;
COE=COEFF. OF CENTRAL DISTANCE (USUALLY COE=1.)
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R=RADIUS OF ROTATION AXIS FOR GENERATING PINION SURFACE
PN=10.D0
N1=20
RMPG=2.D0
RKSI=20.D0*DR
HDC=1.DO/PN
COE=1.010D0
R=3.5D2
(2) PRE-DESIGNED FUNCTION: INPUT CONSTANTS HERE AND INPUT FUNCTION
IN SUBROUTINE FUNC
MATRIX CONST(J) IS USED FOR CONSTANTS OF FUNCTION
CONST(1)=2.D0%3.929751681D-4
(3) MISALIGNMENT: NMIS=ID NO. (1=CROSSING AXES, 2=INTERSECTING AXES);
NG=NO. OF MISALIGNED ANGLES TO BE SIMULATED (FROM 0. TO
(NG-1) *GAMMAI) ; GAMMAI=INCREMENT OF MISALIGNED ANGLE (MINUTE);
NMIS=2
NG=2
GAMMAI=5.D0
(4) OUTPUT: FEEI=INCREMENT OF ROTATION ANGLE OF PINION(DEGREEE)
FEEI=1.0DO*DR

DESCRIPTION OF OUTPUT PARAMETERS

FEE1=ROTATION ANGLE OF PINION
FEE2=ROTATION ANGLE OF GEAR
RP=RADIUS OF PINION CONTACT POINT
RG=RADIUS OF GEAR CONTACT POINT

FIND AUXILIARY VALUES FOR CALCULATION

RP=FLOAT(N1)/2./PN

RG=RP*RMPG

C=(RP+RG) *COE

CK=DCOS (RKS1I)

SK=DSIN(RKSI)

NCOEF=360.DO*DR/FEEI/FLOAT (N1)+0.3D0

N=NCOEF*2+1

NT=N-NCOEF

FII=360.D0/RMPG/FLOAT (N1)
DEFINE MATRIX DESCIBEING MISALIGNMENT AND OUTPUT ASSEMBLING CONDITION

DO 5 1=1,3

DO 5 J=1,3

$(1,7)=0.D0

IF (I.EQ.J) S§(I,J)=1.DC
5 CONTINUE

DO 15 LL=1,NG

GAMMA=GAMMAI*FLOAT (LL-1) /60.DO*DR

CG=DCOS (GAMMA)

SG=DSIN (GAMMA)

GAMMA=GAMMA /DR*60.D0

IF (NMIS.EQ.1) THEN

WRITE (LP,10) COE,GAMMA
10 FORMAT (1H1,///,1X,'C=',F4.2,'*(RP+RG); CROSSING ANGLE=',

+ F5.1,'(M) ")

s(1,1)=CG

§(1,3)=-5G

$(3,1)=SG

$(3,3)=CG

ELSE
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WRITE (LP,20) COE,GAMMA
20 FORMAT (1H1,///,1X%,'C=',F4.2,'*(RP+RG); INTERSECTING ANGLE=',
+ F5.1,' M ")
$(2,2)=CG
S(2,3)=-5G
$(3,2)=SG
s(3,3)=CG
_END IF
C SIMULATING MESHING OF PINION AND GEAR(L=1 FOR FINDING INITIAL
C ROTATION CORRESPONDING TO O PINION ROTATION) AND OUTPUT RESULTS
DO 25 L=1,2
DO 35 I=1,4
35 X(1)=0.D0
DO 45 I=1,N
X (7)=FEEI*FLOAT (I- (N+1)/2)
IF (L.EQ.1) X(7)=0.D0
X (5)=DARSIN(RP*X (7) *SK/R)
X(2)=X(7) /RMPG
SF=DSIN(X(7))
CF=DCOS (X(7))
CALL NONLIN
X(8)=X(2)+X(3)
IF (L.EQ.1) THEN
XIN=X(8)
WRITE (LP,30)
30 FORMAT (////8X,'FEE1(D)',8X, 'FEE2(D)',8X, 'K-ERROR(S)',5X,
+ 'RP', 13X, 'RG'/)
GO TO 25
END IF
X(8)=X(8)-XIN
X(7)=X(7) /DR
X(8)=X(8) /DR
X(9)=(X(8)-X(7) /RMPG) *3600.D0
2 (I)=X(8)
ERR (I)=X(9)
WRITE (LP,40) (X(J),J=7,11)
40 FORMAT (1X,5F15.7,F15.7)
45 CONTINUE
WRITE (LP,50)
50 FORMAT (//,' FIND THE WORKING RANGE FOR ONE TOOTH:'/)
DO 55 I=1,NT
X (7)=FEEI*FLOAT (I-(N+1)/2) /DR/2.D0O
X(8)=X(7)+FII
KK=I+NCOEF
ANGLE=Z (KK)-Z (I)
ERROR (I)=(ANGLE-FII)*3600.DO0
WRITE (LP,60) X(7),X(8),ANGLE
60 FORMAT (1x,'(',F7.2,'----',F7.2,'):',F15.7,F15.7)
55 CONTINUE
DO 65 I=1,NT
ATEMP2=ERROR (I)
IF (I.NE.1) THEN
IF (ATEMP1.GT.0.DO.AND.ATEMP2.LE.0.DO) GOTO 75
END IF
ATEMP1=ATEMP2
65 CONTINUE
WRITE (LP,70)
70 FORMAT (//1X,'MESHING IS DISCONTINOUS')
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75

85

GOTO 25
IF (DABS(ATEMP1) .LT.DABS (ATEMP2)) I=I-1
EMAX=0.DO0

EMIN=0.D0

DO 85 J=1,NCOEF

KS=1+J-1

ET=ERR (KS)

IF (ET.LT.EMIN) EMIN=ET

IF (ET.GT.EMAX) EMAX=ET
CONTINUE

ET=EMAX~EMIN

KK=I+NCOEF

WRITE (LP,80) 2z(I),Z(KK),ET

80 FORMAT (//1X,'WORKING RANGE FOR THE GEAR TOOTH: ',F7.2,'----',

25
15

90

+ F7.2/1X,'THE MAXIMUM KINEMATIC ERROR:

CONTINUE
CONTINUE
WRITE (LP,90)
FORMAT (1H1)
STOP

END

SUBROUTINE FUNC

',F15.7," ()"

THIS SUBROUTINE IS USED TO GENERATE FIVE FUNCTIONS, THAT IS, AT
CONTACT POINT, POSITION VECTOR AND NORMAL OF PINION AND GEAR

MUST COINCIDE
IMPLICIT REAL*8 (A-H,0-Z)

COMMON /BLOCAl/ X(11),Y(10),A(10,10),Y1(10),IPVT{(10),WORK(10),

+ EPSI,DELTA,NC,NE,NDIM

COMMON /BLOCA2/ ALPHA,RKSI,RP,RG,RMPG,RL,SA,CA,DR,CK,SK,HDC,C,

+ 5(3,3),SF,CF,SAK,CAK,Al,XP, YP,ZP,XG, YG,R,CONST(9)

INPUT PRE-DESIGN ERROR FUNCTION EF AND ITS DIFFEVERTIVE DEF,

RECALLING X(5) IS FEEP
EF=-CONST (1) *X(5)*X(5)/2.D0
DEF=-CONST (1) *X(5)
CT=DCOS (X (4))

ST=DSIN(X(4))

CFEE=DCOS (X (3))

SFEE=DSIN(X(3))

CFEK=DCOS (X (3) +RKSI)
SFEK=DSIN (X (3) +RKSI)

GF=DARCOS ((1.DO+DEF*RMPG/ (1.DO+RMPG)) *CK)
CFGK=DCOS (X (5) +GF-RKS1I)
SFGK=DSIN (X (5) +GF-RKSI)

CFP=DCOS (X (5))

SFP=DSIN(X(5))

CFPG=DCOS (X (5) +GF)

SFPG=DSIN (X (5) +GF)

T3=X(5) /RMPG+EF+RKSI-GF

X11=~ (RP+RG) *SFP+RG*SFGK+RG*T3*CK*CFPG
Y11= (RP+RG) *CFP-RG*CFGK+RG*T3*CK*SFPG
XP=X11*CT+R*(CT-1.D0)

YP=Y11

ZP=X11*ST+R*ST

RNXP=CFPG*CT

RNYP=SFPG
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THIS SUBROUTINE IS USED TO SOLVE NONLINEAR EQUATIONS BY NEWTON-

RNZP=CFPG*ST

XG=RG*SFEE+RG*X (2) *CK*CFEK
YG=-RG*CFEE+RG*X (2) *CK*SFEK

26=X(1)

RNXG=CFEK

RNYG=SFEK

RNZG=0.D0

Y (1) =CF*XP+SF*YP-S (1,1) *XG-S(1,2) *YG-S(1,3) *ZG

Y (2)=CF*YP-SF*XP-S(2,1) *XG-5(2,2) *YG-5(2,3) *ZG-C
Y(3)=2P-5(3,1)*XG-5(3,2) *YG-5(3,3) *ZG
Y(4)=CF*RNYP—SF*RNXP-S(2,1)*RNXG-S(Z,Z)*RNYG-S(2,3)*RNZG
Y (5) =RN2ZP-S (3, 1) *RNXG-S (3, 2) *RNYG-S (3, 3) *RNZG

X (10) =DSQRT (XP*XP+YP*YP)

X(11)=DSQRT (XG*XG+YG*YG)

WRITE (6,20) XP,YP,ZP,XG,YG,X(6),Al,A2,A3

FORMAT (1X,'SS$SS',6F15.7)

RETURN

END

SUBROUTINE NONLIN

RAPHSON METHOD

+

10

15

25
35

55
45

65

75

105

IMPLICIT REAL*8(a-H,0-2)

COMMON /BLOCAl/ X(ll),Y(lO),A(lO,lO),Yl(lO),IPVT(lO),WORK(lO),

EPSI,DELTA,NC,NE,NDIM

DO 5 I=1,NC

CALL FUNC

WRITE (6,10) I, (X(J),¥Y(D),J=1,5)
FORMAT (1X, '***' 15/5(1X,2D15.7/))
DO 15 3=1,NE

IF (DABS(Y(J)).GT.EPSI) GO TO 25
CONTINUE

GO TO 105

DO 35 J=1,NE

Y1 (=YD

DO 45 J=1,NE
DIFF=DABS (X (1)) *DELTA

IF (X(J).EQ.0.D0O) DIFF=DELTA
XMAM=X (J)

X(J)=X(J)-DIFF

CALL FUNC

X (J)=XMAM

DO 55 K=1,NE

AR, =(Y1(K)-Y(K)) /DIFF
CONTINUE

DO 65 I=1,NE

Y(I)=-Y1(D)

CALL DECOMP (NDIM,NE,A,COND,IPVT,WORK)
CALL SOLVE (NDIM.NE,A,Y,IPVT)

DO 75 J=1,NE

X(D=X(2)+Y(I)

CONTINUE

RETURN

END
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SUBROUTINE DECOMP (NDIM,N,A,COND, IPVT,WORK)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A (NDIM,N),WORK(N),IPVT(N)

DECOMPOSES AREAL MATRIX BY GAUSSIAN ELIMINATION,
AND ESTIMATES THE CONDITION OF THE MATRIX.

-COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,
M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

USE SUBROUTINE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEM.
IN1UT..

NDIM = DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A

N = ORDER OF THE MATRIX
A = MATRIX TO BE TRIANGULARIZED
OUTPUT..

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PREMUTED
VERSION OF A LOWER TRIANGULAR MATRIX I-L SO THAT
(PERMUTATION MATRIX) *A=L*U

COND = AN ESTIMATE OF THE CONDITION OF A.
FOR THE LINEAR SYSTEM A*X = B , CHANGES IN A AND B
MAY CAUSE CHANGES COND TIMES AS LARGE IN X.
IF COND+1.0 .EQ. COND , A IS SINGULAR TO WORKING
PRECISION. COND IS SET TO 1.0D+32 IF EXACT
SINGULARITY IS DETECTED.

IPVT = THE PIVOT VECTOR
IPVT(K) = THE INDEX OF THE K-TH PIVOT ROW
IPVT(N) = (-1)**(NUMBER OF INTERCHANGES)
WORK SPACE.. THE VECTOR WORK MUST BE DECLARED AND INCLUDED

IN THE CALL. ITS IN1UT CONTENTS ARE IGNORED.
ITS OUTPUT CONTENTS ARE USUALLY UNIMPORTANT.

THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY
DET(A) = IPVT(N) * A(1,1) * a(2,2) * ... * A(N,N) .

IPVT(N)=1
IF (N.EQ.1) GO TO 150
NM1=N-1
COMPUTE THE !-NORM OF 4 .
ANORM=0.D0
DO 20 J=1,N
T=0.D0
DO 10 I=1,N
10  T=T+DABS(A(I,J))
IF (T.GT.ANORM) ANORM=T
20 CONTINUE
DO GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING.
DO 70 K=1,NMl
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KP1=K+1
FIND THE PIVOT.
M=K
DO 30 I=KP1,N
IF (DABS(A(I,K)).GT.DABS(A(M,K))) M=I
30 CONTINUE
IPVT (K) =M
IF (M.NE.K) IPVT(N)=-IPVT(N)
T=A(M,K)
AM,K)=A(K,K)
A(K,K)=T
SAIP THE ELIMINATION STEP IF PIVOT IS ZERO.
IF (T.EQ.0.DO) GO TO 70

COMPUTE THE MULTIPLIERS.
DO 40 I=KP1,N
40 A(I,K)=-A(1,K)/T
INTERCHANGE AND ELIMINATE BY COLUMNS.
DO 60 J=KP1,N
T=A(M,J)
AM,D=AaK,D
AK,D)=T
IF (T.EQ.0.DO) GO TO 60
DO 50 I=KPI,N
50 A(I, D) =AC, D) +A(I,K)*T
60 CONTINUE
70 CONTINUE

COND = (1-NORM OF A)* (AN ESTIMATE OF THE 1-NORM OF A-INVERSE)

THE ESTIMATE IS OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE
SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS

OF EQUATIONS, (A-TRANSPOSE)*Y = E AND A*Z = Y WHERE E

IS A VECTOR OF +1 OR -1 COMPONENTS CHOSEN TO CAUSS GROWTH IN Y.
ESTIMATE = (1-NORM OF Z)/(1-NORM OF Y)

SOLVE (A-TRANSPOSE)*Y = E .
DO 100 K=1,N
T=0.D0
IF (K.EQ.1) GO TO 90
KM1=K-1
DO 80 I=1,KMl
80 T=T+A(I,K)*WORK(I)
90 EK=1.DO
IF (T.LT.0.DO) EK=-1.DO0
IF (A(K,K).EQ.0.DO) GO TO 160
100 WORK (K)=- (ER+T) /A (K,K)
DO 120 KB=1,NM1
K=N-KB
T=0.D0
KP1=K+1
DO 110 I=KP1,N
110  1=T+A(I,K) *WORK (K)
WORK (K) =T
M=IPVT(K)
IF (M.EQ.K) GO TO 120
T=WORK (M)
WORK (M) =WORK (K)
WORK (K) =T
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120

130

140

150

160

CONTINUE

YNORM=0.DO
DO 130 I=1,N
YNORM=YNORM+DABS (WORK (1))

SOLVE A*Z = Y
CALL SOLVE (NDIM,N,A,WORK,IPVT)

ZNORM=0.D0
DO 140 I=1,N
ZNORM=ZNORM+DABS (WORK (I))

ESTIMATE THE CONDITION.
COND=ANORM*ZNORM/YNORM
IF (COND.LT.1.D0O) COND=1.DO
RETURN
1-BY-1 CASE..
COND=1.D0
IF (A(1,1).NE.0.DO) RETURN

EXACT SINGULARITY
COND=1.0D32
RETURN
END
SUBROUTINE SOLVE (NDIM,N,A,B,IPVT)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION A{(NDIM,N),B(N),IPVT(N)

SOLVES A LINEAR SYSTEM, A*X = B
DO NOT SOLVE THE SYSTEM IF DECOMP HAS DETECTED SINGULARITY.

-COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-,
M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

INIUT..

NDIM
N
A
B
IPVT

ORDER OF MATRIX

RIGHT HAND SIDE VECTOR
PIVOT VECTOR OBTAINED FROM DECOMP

"

OUTPUT..

B = SOLUTION VECTOR, X

BY G. E. FORSYTHE,

DECLARED ROW DIMENSION OF ARRAY CONTAINING A

TRIANGULARIZED MATRIX OBTAINED FROM SUBROUTINE DECOMP

DO THE FORWARD ELIMINATION.

IF (N.EQ.1) GO TO 50
NM1=N-1
DO 20 K=1,NMl
KP1=K+1
M=1PVT(K)
T=B (M)
B (M) =B (K)
B(K)=T
DO 10 I=KP1,N
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20

30
40
50

B(I)=B(I)+A(I,K)*T
CONTINUE

DO 40 KB=1,NM1
KM1=N-KB
K=KM1+1
B(K)=B(K) /a(K,K)

=-B (K)
DO 30 I=1,RM1
B(I)=B(I)+A(I,K)*T

CONTINUE

B(1)=B(1)/a(1,1)

RETURN

END

NOW DO THE BACA SUBSTITUTION.
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ALP=80.DO*DR
RC=1.D0
(3) MISALIGNMENT: NMIS=ID NO. (1=CROSSING AXES, 2=INTERSECTING AXES);
NG=NO. OF MISALIGNED ANGLES TO BE SIMULATED (FROM 0. TO
(NG-1) *GAMMATI) ; GAMMAI=INCREMENT OF MISALIGNED ANGLE (MINUTE);
N=500
NG=2
GAMMAI=5.D0O
(4) OUTPUT: ZI=INCREMENT OF TOOTH LENTGH OF CROSS SECTION;
NL=NO. OF CROSS SECTIONS WHERE PINION PROFILE IS SIMULATED;
N=NO. OF POINTS USED TO DEVIDE TOOL PROFILE IN ANY CROSS
SECTION(LARGE N, MORE POINTS IS GOT FOR PINION TOOTH PROFILE)
Z1=0.10D0
NL=3
N=500

DESCRIPTION OF OUTPUT PARAMETERS

Z1=DISTANCE BETWEEN CROSS SECTION CONSIDERED AND MIDDLE CROSS
SECTION

NO=0QUTPUT NO.

Y1=TOOL SURFACE AUXILIARY VARIABLE

XP=X COORDINATE OF PINION PROFILE

YP=Y COORDINATE OF PINION PROFILE

R1=RADIUS OF PINION PROFILE

FEE=CORESPONDING PINION SURFACE PARAMETER

XSH=AVERAGE DEVIATION SHIFT OF CROSS SECTION PROFILE FROM PROFILE
OF MIDDLE SECTION (INVOLUTE CURVE)

XPE=MAXIMUM DEVIATION OF CROSS SECTION PROFILE FROM INVOLUTE CURVE

SDX=STANDARD DEVIATION OF CROSS SECTION PROFILE FROM INVOLUTE
CURVE

FIND AUXILIARY VALUES FOR CALCULATION
RP=FLOAT (N1) /2.DO/PN
CL=RC/DSIN(ALP)
D=CL*DCOS (ALP)
Al=CL-HDC/DCOS (RKS)
RPU=RP+HAC
Do 5 I=1,NL
Z=FLOAT (I-1)*Z1
YY=D-Z/DTAN (ALP)
WRITE (LP,10) 2z
10 FORMAT (1H1/1X,'21=',F15.7/1X,'NO',10X,'Y1', 13X, 'XP',13X,'YP',
+ 13X, 'R1',13X, 'FEE")
CALCULATE THE PROPILE OF THE SURFACE CUT BY PLANE Z=CONST
KKK=0
DO 15 J=1,N
Y1=YY*FLOAT (J-1) /FLOAT (N-1)
F=DSQRT(1.-(Z/(D-Y1) /DTAN (ALP)) *%*2)
FEE= ((D-Y1) *F/DCOS (ALP) -al1* (F*DCOS (ALP) *DCOS (ALP) +DSIN (ALP) *DSIN(
+  ALP)))/RP/(DSIN (ALP) *DCOS (ALP-RKS) —-F*DCOS (ALP) *DSIN (ALP-RKS))
XP (I, J)=(D-Y1) * (DTAN (ALP) *F*DCOS (ALP-RKS+FEE) -DSIN (ALP-RKS+FEE) )
+  +Al1*DSIN(FEE-RKS)-RP*FEE*DCOS (FEE) +RP*DSIN (FEE)
YP(I,J)=-(D-Y1) * (DTAN (ALP) *F*DSIN (ALP~RKS+FEE) +DCOS (ALP-RKS+FEE) )
+  +A1*DCOS (FEE-RKS)+RP*FEE*DSIN (FEE) +RP*DCOS (FEE)
R1=DSQRT (XP (I, J) **2+YP (I, J)**2)
IF (R1.GT.RPU) THEN
Ji=1-1
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PURPOSE

THIS PROGRAM IS USED TO CALCULATE THE SURFACE OF A PINION WHICH IS
GENERATED BY CONE CUTTER

NOTE

THIS PROGRAM IS WRITTEN IN FORTRAN 77. IT CAN BE COMPILED BY V
COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8(a-H,0-Z)
DIMENSION NS(15),XP(15,999),YP(15,999),XERROR (999)

DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND OUTPUT
DEVICES
IN=5
LP=6 ,
(2) NDBUG IS USE TO CONTROLL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=2
(3) NC IS THE UPPER LIMITATION OF REPEATATION FOR SOLVING NONLINEAR
EQUTIONS;
EPSI IS THE CLEARANCE OF FUNCTION VALUES WHEN THE FUNCTIONS
IS CONSIDERED AS SOLVED (ALL FUNTIONS HAVE FORMS OF F(X)=0);
RKSTA IS THE RELATIVE DIFFERENCE FOR TAKING DERIVATIVES
NC, EPSI AND RKSTA MAY BE CHANGED WHEN SOLUTIONS ARE DIVERGENT
OR LESS ACCURATE

NC=100
RKSTA=1.D-3
EPSI=1.D-12

(4) OTHER PARAMETERS (DON'T CHANGE)
DR=DATAN (1.D0) /45.D0

DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)

(1) PINION AND GEAR: PN=DIAMETRAL PITCH; N1=PINION TOOTH NUMBER;
RKS=PRESSURE ANGLE (DEGREE): HDC=HEIGHT OF DEDENDUM OF PINION;
HAC=HEIRHT OF ADDENDUM OF PINION

PN=10.D0
N1=20
RKS=20.DO*DR
HDC=1.DC/PN
HAC=1.DO0/PN

(2) TOOL: ALPHA=HALF OF CONE VERTEX ANGLE (DEGREE);
RC=RADIUS OF BOTTOM CIRCLE OF CONE
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XP(I,J)=XP(I,JI)+(XP(I,])-XP(I,JJ))/(R1-R1TEMP) * (RPU-R1TEMP)
YP(I,1)=YP(I,JI)+(YP(I,J)~YP(I,J1))/(R1-R1TEMP) * (RPU~R1TEMP)
FEE=FEETEM+ (FEE-FEETEM) / (R1-R1TEMP) * (RPU~R1TEMP)
Y1=YITEM+(Y1-YITEM)/(R1-R1TEMP) * (RPU-R1TEMP)
R1=DSQRT (XP (I, J) **2+YP (I, J) **2)
KKK=1
END IF
WRITE (LP,20) J,Y1,XP(I,J),YP(I,J]),R1,FEE

20 FORMAT (1X,14,4F15.7,F15.7)
IF (KKK.GT.0) GO TO 30
FEETEM=FEE
Y1TEM=Y1
R1TEMP=R1

15 CONTINUE

30 NS(I)=J-1
IF (I.NE.1) GO TO 55
NS1=NS(1)
GO TO 5

C PREPARATION OF INTERPLORATION

55 NS2=NS(I)
DO 105 L=1,NS2
J=NS2+1-L :
IF (Yp(1,NS1).GT.YP(I,J)) GO TO 110

105 CONTINUE

110 NS2=1J
NREC=2
XERS=0.D0
DO 115 L=1,NS2
DO 125 J=NREC,NS1
IF (YP(1,J).GT.YP(I,L)) GO TO 120

125 CONTINUE

120 NREC=J
Ji=J-1
XERROR (L) =XP (I,L)-XP(1,J1)-(YP(I,L)-YP(1,J1))*(XP(1,J)-XP(1,J1))
+ /(yp(1,1-YP(1,J1))

XERS=XERS+XERROR (L)
115 CONTINUE
XERS=-XERS/FLOAT (NS2)
XPE=0.D0
SDX=0.D0
IF (NDBUG.GT.2) WRITE (LP,80)
80 FORMAT (1H1,13X,'NO.',4X,'DIVIATION VALUE')
DO 45 L=1,NS2
XERROR (L) =XERROR (L) +XERS
IF (NDBUG.GT.2) WRITE (LP,50) L,XERROR(L)
50 FORMAT (13X,I3,2F15.7)
IF (DABS (XERROR (L)) .GT.XPE) XPE=DABS (XERROR (L))
SDX=SDX+XERROR (L) **2
45 CONTINUE
SDX=DSQRT (SDX/FLOAT (NS§2))
WRITE (LP,40) XERS,XPE,SDX
40 FORMAT (///1X,'XSH=',E15.7,5X,'XPE=',E15.7,5X,'SDX="',E15.7)
IF (NDBUG.GT.2) WRITE (LP,60) NS1,NS2
‘60 FORMAT (//5X,'NSl1=',16,6X, 'NS2=',16)
5 CONTINUE
STOP
END

77



FLOWCHART FOR PROGRAM III

‘ START ’

Y
/ INPUT GIVEN DATA /

Y
FIND AUXILIARY VALUES
FOR CALCULATION

[
CHECK IF UNDERCUTTING
OR FIND SOME DESIGNED
PARAMETER TO AVOID
UNDERCUTTING

78



eNeNeEeXKs!

(@

O

sEeNeNeNe Ke]

O 0

o000 00000000O000O000O000n

.

. ook sk o sk et dedede sk de sk ddesk de ke e deste o e s b ok e e e e e s de e e ek b ko ke ke e e e de e ke

% % ¥ % % * % %

b

*

PROGRAM III
UDDERCUTTING CONDITION FOR PINION GENERRATED
BY CONE CUTTER

AUTHOR: FAYDOR LITVIN
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PURP

OSE

THIS PROGRAM IS USED TO FIND THE UDDERCUTTING CONDITIONS FOR A

NOTE

THIS PROGRAM IS WRITTEN IN FORTRAN 77.

DEFINE PARAMETERS USED BY PROGRAMS

PINION GENERATED BY CONE CUTTER

IT CAN BE COMPILED BY V

COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8(A-H,0-2)

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND OUTPUT

DEVICES
IN=5
LP=6

(2) NDBUG 1S USE TO CONTROLL THE AUXILIARY OUTPUT FOR DEBUGGING

(3) OTHER PARAMETERS(DON'T CHANGE)

NDBUG=2

DR=DATAN (1.D0) /45.D0

DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)

(1) PINION AND GEAR: PN=DIAMETRAL PITCH; N1=PINION TOOTH NUMBER;
RKSI=PRESSURE ANGLE; HDC=HEIGHT OF DEDENDUM OF PINION;

TL=TOOTH LENGTH
PN=10.D0
N1=20
RKSI=20.D0*DR
HDC=1.DO/PN
TL=6.D0/PN

(2) TOOL: ALPHA=HALF OF CONE VERTEX ANGLE (DEGREE);

RC=RADIUS OF BOTTOM CIRCLE OF CONE

ALPHA=80.D0O*DR
RC=1.D0

OO0 00

(3) PROBLEM: NPROB=ID NO. OF PROBLEM (-1=GIVEN N1 AND HDC, FIND IF
UDDERCUTTING OCCUR; O=GIVEN N1, FIND MAXIMUM HDC WITHOUT UDDER-
CUTTING; 1=GIVEN HDC, FIND MINIMUM N1 WITHOUT UDDERCUTTING) ;
N=NO. OF THETA VALUES USED CALCULATION (BETWEEN THETAS CORRES-
PONDING TO MIDDLE SECTION AND EDGE SECTION OF PINION)

NPROB= 1
N=11
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DESCRIPTION OF OUTPUT

C
C
C OUTPUT IS A STATEMENT BASED ON THE PROBLEM WITHOUT ANY LITERAL
C PARAMETER
C
C FIND AUXILIARY VALUES FOR CALCULATION
CL=RC/DSIN (ALPHA)
SA=DSIN (ALPHA)
CA=DCOS (ALPHA)
SK=DSIN (RKSI)
CK=DCOS (RKSI)
SAK=DSIN (ALPHA-RKSI)
CAK=DCOS (ALPHA-RKSI)
THEMAX=DARSIN(TL/2.0/54)
IF (NPROB.NE.Q) THEN
Al=(CL-HDC/CK) *CK
ACL=Al/CL
END IF
IF (NPROB.LT.1) THEN
RP=FLOAT(N1)/2./PN
RCL=RP/CL
END IF
WRITE (LP,90)
90 FORMAT (1H1)
IF (NPROB) 5,15,25
C CHECK IF UNDERCUTTING OCCURS
5 IF (NDBUG.LT.1) WRITE (LP,10)
10 FORMAT (1H1/3X,'NO',7X,'THETA',612X,'A',13X,'B',14X,'C',10X,

+ "BX*2-4,%A%C' 3X, 'Ul/ (RC/SIN(ALPHA)) ")
UMIN=5.D0

DO 45 I=1,N
THE=THEMAX*DBLE (FLOAT (I-1)) /DBLE (FLOAT(N-1))
ST=DSIN(THE)

CT=DCOS (THE)
COE1=CA*CAK+CT*SA*SAK
COE2=SA*CAK-CT*CT*CT*CA*SAK
COE3=SA*CAK-CT*CA*SAK
COE4=ST*ST*SA*CA
A=COE1*COE2
B=-ACL* (COE2+COE1*COE4) -RCL*COE3*%*3
C=ACL*ACL*COE4
DD=B*B-4, *A*C
IF (DD.GE.0.) THEN
UlCL=(~B+DSQRT(DD))/2./A
IF (UMIN.GT.UICL) UMIN=UlCL
U2CL=(~-B-DSQRT(DD)) /2./A
IF (NDBUG.LT.1) WRITE (LP,100) I,THE,A,B,C,DD,UlCL
100 FORMAT (1X,I4,8F15.7)
ELSE _
IF (NDBUG.LT.1) WRITE (LP,100) I,THE,A,B,C,DD
END IF
45 CONTINUE
IF (UMIN.LT.1.D0) WRITE (LP,110)
110 FORMAT (///1X, 'UDDERCUTTING WILL OCCUR FOR YOUR DESIGN')
IF (UMIN.GE.1.D0O) WRITE (LP,120)
120 FORMAT (///1X,'UDDERCUTTING WILL NOT OCCUR FOR YOUR DESIGN')
GO TO 35
C DETERMINE THE MAXIMUM ADDENDUM HEIGHT OF RACA CUTTER
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15 IF (NDBUG.LT.1) WRITE (LP,20)
20 FORMAT (1H1/3X,'NO',7X,'THETA',12X,'A',13X,'B',14X,'C',10X,

+ "B**2-4,*A*C'  3X, 'ALLOWED RATIO OF HDC/(i/PN)')

UMIN=5.D0

DO 55 I=1,N

THE=THEMAX*DBLE (FLOAT (I-1)) /DBLE (FLOAT (N-1))

ST=DSIN (THE)

CT=DCOS (THE)

COE1=CA*CAK+CT*SA*SAK

COE2=SA*CAK-CT*CT*CT*CA*SAK

COE3=SA*CAK-CT*CA*SAK

COE4=ST*ST*SA*CA
! C=COE1*COE2-RCL*COE3**3

B=- (COE2+COE1*COE4)
j A=COE4
| DD=B*B-4. *A*(C
t
|
|
|
|
|

IF (DD.GE.0.) THEN
IF (A.NE.O.) THEN
UlCL=(-B-DSQRT(DD))/2./A
U2CL=(-B+DSQRT(DD))/2./A
ELSE
UlCL=-C/B
U2CL=0.
END IF
UlCL=(CK-U1CL) *CL*PN
U2CL=(CK-U2CL) *CL*PN
| IF (NDBUG.LT.1) WRITE (LP,100) I,THE,A,B,C,DD,UICL
ELSE
\ IF (NDBUG.LT.l1) WRITE (LP,100) I,THE,A,B,C,DD
! END IF
! IF (UMIN.GT.UICL) UMIN=UICL
‘ 55 CONTINUE '
| WRITE (LP,200) UMIN
200 FORMAT (///1X,'TO AVOID UDDERCUTTING, IT IS NECESSARY TO KEEP DEDE
| +NDUM OF PINION <=' F10.7,'/PN')
GO TO 35
| C DETERMINE THE MINIMUM NO. OF TEETH FOR UNUNDERCUTTING
i 25 IF (NDBUG.LT.1) WRITE (LP,30)
30 FORMAT (1H1/3X,'NO',7X,'THETA',7X,'NO. OF TEETH')
| RNMAX=0,
DO 65 I=1,N
THE=THEMAX*DBLE (FLOAT (I-1)) /DBLE(FLOAT(N-1))
ST=DSIN (THE)
CT=DCOS (THE)
COE1=CA*CAK+CT*SA*SAK
COE2=SA*CAK-CT*CT*CT*CA*SAK
COE3=SA*CAK-CT*CA*SAK
COE4=ST*ST*SA*CA
RR= (COE1"COE2-ACL* (COE2+COE1*COE4) +ACL*ACL*COE4) /COE3**3
RN=2, *RR*PN*CL
IF (RNMAX.LT.RN) RNMAX=RN
IF (NDBUG.LT.l1) WRITE (LP,100) I,THE,RN
65 CONTINUE
WRITE (LP,300) RNMAX
300 FORMAT (/// 1X,'WITHOUT UDDERCUTTING, MINIMUM TOOTH NO. OF PINION
+18:',F11.7)
p 35 WRITE (LP,400)
400 FORMAT (1H1)
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PURPOSE

THIS PROGRAM IS USED TO CALCULATE THE CONTACT ELLIPSIS WHEN PINION
GENERATED BY CONE CUTTER IN MESHING WITH REGULAR INVOLUTE GEAR

NOTE

THIS PROGRAM IS WRITTEN IN FORTRAN 77. IT CAN BE COMPILED BY V
COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8(A-H,0-2)
DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE IN1UT AND OQUTPUT
DEVICES
IN=5
LP=6
(2) NDBUG IS USE TO CONTROLL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=2
(3) OTHER PARAMETERS (DON'T CHANGE)
DR=DATAN (1.D0) /45.D0

DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)

(1) PINION AND GEAR: PN=DIAMETRAL PITCH; N1=PINION TOOTH NUMBER;
RMPG=TOOTH NUMBER RATIO(GEAR TOOTH NO./N1);
RKSI=PRESSURE ANGLE
PN=10.D0
N1=20
RMPG=2.D0
RKSI=20.DO*DR
(2) TOOL: ALPHA=HALF OF CONE VERTEX ANGLE (DEGREE):
RC=RADIUS OF BOTTOM CIRCLE OF CONE;
ALPHA=89.5D0*DR
RC=1.D0
(3) DEFORMATION: DEL=CONTACT DEFORMATION AT CONTACT POINT
DEL=4.D-4
(4) OUTPUT: PD=RECIPROCAL OF INCREMENT OF S VALUE(S IS THE DISTANCE
CONTACT POINT AND INSTANTANEOUS CENTER)
PD=100.DO0

DESCRIPTION OF OUTPUT PARAMETER

S$=DISTANCE BETWEEN CONTACT POIN™ iND INSTANTANEQUS CENTER
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C R1=PINION RADIUS OF CONTACT POINT

C FEE=PINION ROTATION ANGLE CORRESPONDING TO CONTACT POINT

C A=LENGTH OF HALF SHORT AXIS OF CONTACT ELLIPSE

c B=LENTH OF HALF LONG AXIS OF CONTACT ELLIPSE (ALONG DIRECTION OF
C

c

c

GEAR TOOTH LEHGTH)

FIND AUXILIARY VALUES FOR CALCULATION

RP=FLOAT(N1)/2./PN

SA=DSIN (ALPHA)

CA=DCOS (ALPHA)

SK=DSIN(RKSI)

CK=DCOS (RKSI)

RL=RC/SA

SMAX=(DSQRT (((1.D0+2.D0O/FLOAT (N1)) /CK) **2-1.D0) -SK/CK) *CK*RP
NA=IDINT (SMAX*PD+0. 5D0)

SMAX=FLOAT (NA) /PD

SMIN=(DSQRT (((1.+2./FLOAT(N1)/RMPG) /CK) **2~1,)~SK/CK) *CK*RP*RMPG
NB=-IDINT (SMIN*PD+0. 5D0)

SMIN=FLOAT (NB) /PD

N=1+NA-NB

WRITE (LP,10) RP,N1,RMPG

10 FORMAT (1H1,///5X,'RADIUS OF THE PITCH CIRCLE OF PINION (RP):',

C FI

30

+F15.7//5X,'TOOTH NO. OF PINION(N1):',I8//5X, 'RATIO OF ANGULAR VELO
+CITY (OMEGA OF PINION/OMEGA OF GEAR):',F15.7///1X,'OUTPUT DESIGNAT
+ION: S=DISTANCE BETWEEN CONTACT POINT AND INSTANTANEOUS CENTER'/
+21X, 'R1=PINION RADIUS OF CONTACT POINT:; FEE=PINION ROTATION CORRES
+PONDING TO CONTACT POINT'/21X, 'A=LENGTH OF HALF SHORT AXIS; B=LENG
+TH OF HALF LONG AXIS(ALONG DIRECTION OF GEAR TOOTH LEHGTH)'/////
+10X,'S',14X,'R1',10X, 'FEEI(D) ', 11X, 'A', 14X, 'B', 13X, 'B/A'//)
ND POSITION AND DIMENSION OF CONTACT ELLIPSE

DO 5 L=1,N

S=SMIN+ (SMAX-SMIN) /FLOAT (N-1) *FLOAT (L-1)

A=DSQRT (DEL*RP* (SK+S/RP) * (RMPG*SK—S/RP) *2.D0/ (1.DO+RMPG) /SK)
B=DSQRT (DEL*2.D0*SA/CA* (RL-2.DO*RP/CK/FLOAT(N1)-S*SK/CK))

C=B/A

FEE=S/RP/CK

R1=RP*DSQRT (1.DO+ (FEE*CK) **2+2.DO*FEE*CK*SK)

FEE=FEE/DR

WRITE (LP,20) S,R1,FEE,A,B,C

FORMAT (1X,6F15.7)

CONTINUE

WRITE (LP,30)

FORMAT (1H1)

STOP

END
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PROGRAM V
KINEMATIC ERROR OF THE PINION GENERATED BY CONE
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PURPOSE

THIS PROGRAM IS USED TO CALCULATE THE KINEMATIC ERROR OF A PINION
GENERATEED BY CONE CUTTER MESHING WITH A MISALIGNED REGULAR
INVOLUTE GEAR

NOTE

THIS PROGRAM IS WRITTEN IN FORTRAN 77, IT CAN BE COMPILED BY V
COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

sNeNeNeoNoNeoNoNeoNeNeNeNes e e e Re RN e NaEs N Ne e

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Z(99),ERR(99),ERROR (99)
COMMON /BLOCAl/ X(11),Y(10),A(10,10),Y1(10),IPVT(10) ,WORK(10),

+ EPSI,DELTA,NC,NE,NDIM
COMMON /BLOCA2/ ALPHA,RKSI,RP,RG,RMPG,RL,SA,CA,DR,CK,SK,HDC,
+ c,s(3,3),SF,CF,SAK,CAK,Al,XP,YP,ZP,XG, YG,R
C
C DEFINE PARAMETERS USED BY PROGRAMS
C
C (1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND QUTPUT
C DEVICES
IN=5
LP=6
c (2) NDBUG IS USE TO CONTROLL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=2
C (3) NC IS THE UPPER LIMITATION OF REPEATATION FOR SOLVING NONLINEAR
C EQUTIONS;
C EPSI IS THE CLEARANCE OF FUNCTION VALUES WHEN THE FUNCTIONS
C IS CONSIDERED AS SOLVED (ALL FUNTIONS HAVE FORMS OF F(X)=0);
C DELTA IS THE RELATIVE DIFFERENCE FOR TAKING DERIVATIVES
c NC, EPSI AND DELTA MAY BE CHANGED WHEN SOLUTIONS ARE DIVERGENT
o OR LESS ACCURATE
NC=100
DELTA=1.D-3
EPSI=1.D-12
C  (4) OTHER PARAMETERS(DON'T CHANGE)
NDIM=10
NE=5

DR=DATAN(1.D0) /45.D0
C DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)
C (1) PINION AND GEAR: PN=DIAMETRAL PITCH; N1=PINION TOOTH NUMBER;
c RMPG=TOOTH NUMBER RATIO(GEAR TOOTH NO./N1);
C RKSI=PRESSURE ANGLE; HDC=HEIGHT OF DEDENDUM OF PINION;
o COE=COEFF. OF CENTRAL DISTANCE(USUALLY COE=1.)
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PN=10.D0
N1=20
RMPG=2.D0
RKSI=20.DO*DR
HDC=1.DO/PN
COE=1.005D0

C (2) TOOL: ALPHA=HALF OF CONE VERTEX ANGLE (DEGREE);
C RC=RADIUS OF BOTTOM CIRCLE OF CONE
c R=RADIUS OF ARC(FOR EXACT CONE CHOOSE R >1.D6*N1/2/PN)
ALPHA=80.DO*DR
RC=1.D0
R=1.0D3
C  (3) MISALIGNMENT: NMIS=ID NO. (1=CROSSING AXES, 2=INTERSECTING AXES);
C NG=NO. OF MISALIGNED ANGLES TO BE SIMULATED (FROM 0. TO
C (NG-1) *GAMMAT) ; GAMMAI=INCREMENT OF MISALIGNED ANGLE(MINUTE);
NMIS=1
NG=2
GAMMAI=5.D0

C (4) OUTPUT: FEEI=INCREMENT OF ROTATION ANGLE OF PINION(DEGREEE)
FEEI=1.0D0*DR

DESCRIPTION OF OUTPUT PARAMERTERS

C

C

C

c FEE1=ROTATION ANGLE OF PINION

C FEE2=ROTATION ANGLE OF GEAR

C RP=RADIUS OF PINION CONTACT POINT
C RG=RADIUS OF GEAR CONTACT POINT

C
C

FIND AUXILIARY VALUES FOR CALCULATION
RP=FLOAT(N1)/2./PN
RG=RP*RMPG
C=(RP+RG) *COE
CA=DCOS (ALPHA)
SA=DSIN (ALPHA)
CK=DCOS (RKSI)
SK=DSIN(RKSI)
SAK=DSIN (ALPHA-RKSI)
CAK=DCOS (ALPHA-RKSI)
RL=RC/SA
Al=RL-HDC/CK
NCOEF=360.D0*DR/FEEI/FLOAT (N1)+0.3D0
N=NCOEF*2+1
NT=N-NCOEF
F1I=360.D0/RMPG/FLOAT(N1)
C DEFINE MATRIX DESCIBEING MISALIGNMENT AND OUTPUT ASSEMBLING CONDITION
DO 5 I=1,3
DO 5 J=1,3
$(1,1)=0.D0
IF (I.EQ.J) S(I,J)=1.D0
5 CONTINUE
DO 15 LL=1,NG
GAMMA=GAMMAI*FLOAT (LL-0) /60.DO*DR
CG=DCOS (GAMMA)
SG=DSIN (GAMMA)
GAMMA=GAMMA/DR*60.D0
IF (NMIS.EQ.1) THEN
WRITE (LP,10) COE,GAMMA
10 FORMAT (1H1,///,1X,'C=',F5.3,'*(RP+RG); CROSSING ANGLE=',
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20 FORMAT (1H1,///,1X,'C=',F4.2,'*(RP+RG);

c SI
C

35

30

40
45

50

60
55

+ F5.1,' (M) ")
S(1,1)=CG

5(1,3)=-56G

$(3,1)=SG

5(3,3)=CG

ELSE

WRITE (LP,20) COE,GAMMA

+ F5.1,'(M) ")
5(2,2)=CG

5(2,3)=-5G

5$(3,2)=SG

$(3,3)=CG

END IF
MULATING MESHING OF PINION AND GEAR(L=1 FOR FINDING INITIAL
ROTATION CORRESPONDING TO O PINION ROTATION) AND OUTPUT RESULTS
DO 25 L=1,2

DO 35 I=1,4

X(1)=0.D0

DO 45 I=1,N

X (7)=FEEI*FLOAT (I- (N+1)/2)
IF (L.EQ.1) X(7)=0.D0

X (5)=DARSIN(RP*X(7) *SK/R)
X(2)=X(7) /RMPG
SF=DSIN(X(7))
CF=DCOS (X (7))

CALL NONLIN

X(8)=X(2)+x(3)

IF (L.EQ.1) THEN

XIN=X(8)

WRITE. (LP,30)

FORMAT (////8X,'FEE1(D)',8X,'FEE2(D)',8X, 'K-ERROR(S)',5X,
+ 'RP', 13X, 'RG'/)

GO TO 25

END IF

X(8)=X(8)-XIN

X(7)=X(7) /DR

X(8)=X(8) /DR
X(9)=(X(8)-X(7) /RMPG) *3600.D0
Z(1)=X(8)

ERR (1) =X(9)

WRITE (LP,40) (X(J),J=7,11)

FORMAT (1X,5F15.7,F15.7)

CONTINUE

WRITE (LP,50)

FORMAT (//,' FIND THE WORKING RANGE FOR ONE TOOTH:'/)
DO 55 I=1,NT
X(7)=FEEI*FLOAT (I- (N+1)/2)/DR/2.DO
X(8)=X(7)+FII

KK=I1+NCOEF

ANGLE=Z (KK)-Z (1)

ERROR (I)=(ANGLE~FII)*3600.D0

WRITE (LP,60) X(7),X(8),ANGLE
FORMAT (1X,'(',F7.2,'--—-',F7.2,'):',F15.7,F15.7)
CONTINUE

DO 65 I=1,NT

ATEMP2=ERROR (I)

IF (I.NE.1l) THEN

89

INTERSECTING ANGLE=',



IF (ATEMP1.GT.0.DO.AND.ATEMP2.LE.0.D0) GOTO 75
END IF
ATEMP 1=ATEMP2
65 CONTINUE
WRITE (LP,70)
70 FORMAT (//1X,'MESHING IS DISCONTINOUS')
GOTO 25
75 IF (DABS (ATEMP1) .LT.DABS (ATEMP2)) I=I-1
EMAX=0,D0
EMIN=0.D0
DO 85 J=1,NCOEF
KS=I+J-1
ET=ERR (KS)
IF (ET.LT.EMIN) EMIN=ET
IF (ET.GT.EMAX) EMAX=ET
85 CONTINUE
ET=EMAX-EMIN
KK=I+NCOEF
WRITE (LP,80) z(I),Z(KK),ET
80 FORMAT (//1X,'WORKING RANGE FOR THE GEAR TOOTH: ',F7.2,'-——-',
+ F7.2/1X,'THE MAXIMUM KINEMATIC ERROR: ',F15.7,' (§)")
25 CONTINUE
15 CONTINUE
WRITE (LP,90)
90 FORMAT (1H1)
STOP
END

SUBROUTINE FUNC

THIS SUBROUTINE 1S USED TO GENERATE FIVE FUNCTIONS, THAT IS, AT
CONTACT POINT, POSITION VECTOR AND NORMAL OF PINION AND GEAR
MUST COINCIDE
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /BLOCALl/ X(11),Y(10),A(10,10),Y1(10),IPVT(10),WORK(10),

+ EPSI,DELTA,NC,NE,NDIM
COMMON /BLOCAZ/ ALPHA,RKSI,RP,RG,RMPG,RL,SA,CA,DR,CK, SK, HDC,
+ ¢c,s(3,3),SF,CF,SAK,CAK,Al,XP, YP,ZP, XG, YG,R

CT=DCOS (X(4))
ST=DSIN(X(4))
CFEE=DCOS (X (3))
SFEE=DSIN(X(3))
CFEK=DCOS (X (3) +RKSI)
SFEK=DSIN (X (3) +RKSI)
CAB=DCOS (ALPHA+X (5))
SAB=DSIN (ALPHA+X(5))
CAB2=DCOS (ALPHA+X (5) /2.D0)
SAB2=DSIN (ALPHA+X (5) /2.D0)
SB=DSIN(X(5))
SB2=DSIN(X(5)/2.D0)
A2=A1%SA* (CT-1)

X (6)=(A2*SAB-R*SB*CT) / (SAB*CAK-CT*CAB*SAK) /RP
CFP=DCOS (X (6))
SFP=DSIN (X (6))

CAKF=DCOS (ALPHA-RKSI+X(6))
SAKF=DSIN (ALPHA-RKSI+X(6))
A3=2,DO*R*SB2
T3=CAB2*SAKF-CT*SAB2*CAKF
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THIS SUBROUTINE IS USED TO SOLVE NONLINEAR EQUATIONS BY NEWTON-

XP=A3* (CAB2*SAKF-CT*SAB2*CAKF) +A2*CAKF-RP*X (6) *CFP+RP*SFP
YP=A3%* (CAB2*CAKF+CT*SAB2*SAKF) —A2%SAKF+RP*X (6) *SFP+RP*CFP
ZP=(A1*SA-A3*SAB2) *ST

RNXP=CT*CAB*CAKF+SAB*SAKF

RNYP=-CT*CAB*SAKF+SAB*CAKF

RNZP=ST*CAB

XG=RG*SFEE+RG*X (2) *CK*CFEK

YG=—RG*CFEE+RG*X (2) *CK*SFEK

26=X(1)

RNXG=CFEK

RNYG=SFEK

RNZG=0.D0

T1=CF*XP+SF*YP

T2=S(1,1)*XG+S(1,2)*YG+S(1,3)*2G

WRITE (6,50) T1,T2,XP,YP,X(6)

FORMAT (1X,'T1=',F15.7,5X,'T2=',F15.7,2F15.7)

Y (1) =CF*XP+SF*YP-S(1,1) *XG-S(1,2) *YG-S(1,3)*ZG

Y (2) =CF*YP-SF*XP-S(2,1) *XG-S(2,2) *YG-5(2,3) *2G-C

Y (3)=2P-5(3,1) *XG-5(3,2) *YG-5(3,3) *2G

Y (4) =CF*RNYP-SF*RNXP-S (2, 1) *RNXG-S (2, 2) *RNYG-S (2, 3) *RNZG
Y (5)=RNZP-S(3, 1) *RNXG-S (3, 2) *RNYG-S (3, 3) *RNZG

X (10)=DSQRT (XP*XP+YP*YP)

X(11)=DSQRT (XG*XG+YG*YG)

WRITE (6,20) XP,YP,ZP,XG,YG,X(6),Al,A2,A3

FORMAT (1X,'$S$$S',6F15.7)

RETURN

END

SUBROUTINE NONLIN

RAPHSON METHOD

10

15

25
35

55
45

65

IMPLICIT REAL*8(A-H,0-2)

COMMON /BLOCALl/ X(11),Y(10),A(10,10),Y1(10),IPVT(10),WORK(10),
+ EPSI,DELTA,NC,NE,NDIM

DO 5 I=1,NC

CALL FUNC

WRITE (6,10) I,(X@J3),Y(J),J=1,5)
FORMAT (1X, '*%*' 15/5(1X,2D15.7/))
DO 15 J=1,NE

IF (DABS(Y(J)).GT.EPSI) GO TO 25
CONTINUE

GO TO 105

DO 35 J=1,NE

Y1 (D) =Y ()

DO 45 J=1,NE
DIFF=DABS (X (J)) *DELTA

IF (X(J).EQ.0.D0) DIFF=DELTA
XMAM=X (J)

X{J)=X(J)-DIFF

CALL FUNC

X (J) =XMAM

DO 55 K=1,NE

AR, =(YL(R)-Y(X)) /DIFF
CONTINUE

DO 65 J=1,NE

Y(D=-Y1(J)
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CALL DECOMP (NDIM,NE,A,COND, IPVT,WORK)
CALL SOLVE (NDIM,NE,A,Y,IPVT)
DO 75 J=1,NE
75 X(D)=X(N+Y ()
5 CONTINUE
105 RETURN
END

SUBROUTINE DECOMP (NDIM,N,A,COND,IPVT,WORK)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NDIM,N) ,WORK(N),IPVT(N)

DECOMPOSES AREAL MATRIX BY GAUSSIAN ELIMINATION,
AND ESTIMATES THE CONDITION OF THE MATRIX.

~COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,
M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

USE SUBROUTINE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEM.
INIUT..

NDIM = DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A

N = ORDER OF THE MATRIX
A = MATRIX TO BE TRIANGULARIZED
OUTPUT..

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PREMUTED
VERSION OF A LOWER TRIANGULAR MATRIX I-L SO THAT
(PERMUTATION MATRIX) *A=L*U

COND = AN ESTIMATE OF THE CONDITION OF A.
FOR THE LINEAR SYSTEM A*X = B , CHANGES IN A AND B
MAY CAUSE CHANGES COND TIMES AS LARGE IN X.
IF COND+1.0 .EQ. COND , A IS SINGULAR TO WORKING
PRECISION. COND IS SET TO 1.0D+32 IF EXACT
SINGULARITY IS DETECTED.

IPVT THE PIVOT VECTOR
IPVT(K) = THE INDEX OF THE K-TH PIVOT ROW
IPVT(N) (-1) ** (NUMBER OF INTERCHANGES)

WORK SPACE.. THE VECTOR WORK MUST BE DECLARED AND INCLUDED
IN THE CALL. ITS INIUT CONTENTS ARE IGNORED.
ITS OUTPUT CONTENTS ARE USUALLY UNIMPORTANT.

THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY

DET(A) = IPVT(N) * a(l,1) * a(2,2) * ... * aA(N,N)
IPVT(N) =1

IF (N.EQ.1) GO TO 150

NM1=N-1

COMPUTE THE 1-NORM OF A .,
ANORM=0.D0
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DO 20 J=1,N
T=0.D0
DO 10 I=1,N
T=T+DABS(A(I,J))
IF (T.GT.ANORM) ANORM=T
CONTINUE
DO GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING.
DO 70 K=1,NM1
KP1=K+1
FIND THE PIVOT.
M=K
DO 30 I=KPI,N
IF (DABS(A(I,K)).GT.DABS(A(M,K))) M=I
CONTINUE
IPVT (K) =M
IF (M.NE.K) IPVT(N)=-IPVT(N)
T=a(M,K)
A(M,K)=A(K,K)
A(K,K)=T
SAIP THE ELIMINATION STEP IF PIVOT IS ZERO.
IF (T.EQ.0.DO) GO TO 70

COMPUTE THE MULTIPLIERS.
DO 40 I=KPI,N
A(I,K)=-A(I,K)/T
INTERCHANGE AND ELIMINATE BY COLUMNS.

DO 60 J=KP1,N

T=A(M,J)

A(M,T)=A(K,J)

AK,I=T

IF (T.EQ.0.DO) GO TO 60

DO 50 I=KP1,N

AT, D=A0,D+A,K)*T
CONTINUE

70 CONTINUE

COND = (1-NORM OF A)* (AN ESTIMATE OF THE 1-NORM OF A-INVERSE)

THE ESTIMATE IS OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE
SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS

OF EQUATIONS, (A-TRANSPOSE)*Y = E AND A*Z = Y WHERE E

IS A VECTOR OF +1 OR -1 COMPONENTS CHOSEN TO CAUSS GROWTH IN Y.
ESTIMATE = (1-NORM OF Z)/(1-NORM OF Y)

80
90

SOLVE (A-TRANSPOSE)*Y = E .

DO 100 K=1,N

T=0.D0

IF (K.EQ.1) GO TO 90

KM1=K-1

‘DO 80 I=1,KMl
T=T+A (I,K) *WORK(I)

EK=1,D0

IF (T.LT.0.DO) EK=-1.DO

IF (A(X,K).EQ.0.D0O) GO TO 160

100 WORK(K)=-(EK+T) /A(K,K)

DO 120 KB=1,NMl

K=N-KB
T=0.D0
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110

120

130

140

150

160

KP1=K+1
DO 110 I=KP1,N
T=T+A(I,K) *WORK (K)
WORK (K) =T
M=IPVT (K)
IF (M.EQ.K) GO TO 120
T=WORK (M)
WORK (M) =WORK (K)
WORK (K) =T

CONTINUE

YNORM=0.DO
Do 130 I=1,N
YNORM=YNORM+DABS (WORK (1))

SOLVE A*Z = Y
CALL SOLVE (NDIM,N,A,WORK,IPVT)

ZNORM=0.D0
DO 140 I=1,N
ZNORM=ZNORM+DABS (WORK (1))

ESTIMATE THE CONDITION.
COND=ANORM*ZNORM/YNORM
IF (COND.LT.1.DO) COND=1.DO
RETURN
1-BY-1 CASE..
COND=1.D0
IF (A(1,1).NE.0.DO) RETURN

_ EXACT SINGULARITY
COND=1.0D32
RETURN
END
SUBROUTINE SOLVE (NDIM,N,A,B,IPVT)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(NDIM,N),B(N),IPVT(N)

SOLVES A LINEAR SYSTEM, A*X = B

DO

NOT SOLVE THE SYSTEM IF DECOMP HAS DETECTED SINGULARITY.

~COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,

M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

IN1UT..
NDIM = DECLARED ROW DIMENSION OF ARRAY CONTAINING A
N = ORDER OF MATRIX
A = TRIANGULARIZED MATRIX OBTAINED FROM SUBROUTINE DECOMP
B = RIGHT HAND SIDE VECTOR
IPVT = PIVOT VECTOR OBTAINED FROM DECOMP
OUTPUT..

B = SOLUTION VECTOR, X

DO THE FORWARD ELIMINATION.
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IF (N.EQ.1) GO TO 50
NM1=N-1
DO 20 K=1,NM1
KP1=K+1
M=IPVT (K)
T=B (M)
B (M) =B (K)
B(K)=T
DO 10 I=KP1,N
B(I)=B(I)+A(I,K)*T
CONTINUE

DO 40 KB=1,NMI
KM1=N-KB
K=KM1+1
B (K) =B (K) /A (K,K)
T=-B (K)

DO 30 I=1,KMl
B(I)=B(I)+A(I,K)*T

CONTINUE

B(1)=B(1)/a(1,1)

RETURN

END

NOW DO THE BACA SUBSTITUTION.
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